# XAUI Compliance Channel

#### **Phase Response Specification**

Dawson Kesling - Intel

# The Problem with Group Delay

The GD requirement is not met by any measured channel



Data contributed by Cisco, Intel, PMC, National and Tyco

#### The Real Problem with Group Delay

Linear phase

Non-linear phase

 $v(t) = A \sin(\omega [t - T_d])$   $\phi_{lin} = \omega T_d$   $v(t) = A \sin(\omega [t - t_d(\omega)])$  $\phi = \omega t_d(\omega)$ 

GD

 $= - d\phi/d\omega$ 

= -  $t_d(\omega) [dt_d/d\omega]_{\omega}$ 

- GD is a derivative, and is inherently "spiky".
- GD does not relate directly to jitter.
- GD is not as useful for baseband as for RF specifications.
- We should not have used GD < 80 ps (0.25 UI) for phase specification

# Group Delay

#### $d\phi/d\omega$ is the slope of the tangent to the phase response.



## Data: Group Delay vs. Flat Phase

Measured data suggests that flat phase is smoother. Is it a more appropriate parameter for specification?



Measured data contributed by TI

#### **Two-tone DJ**

We need something related to jitter.

Non-linear phase:  $\phi(\omega) = \omega t_d(\omega)$ Solve for delay:  $t_d(\omega) = \phi(\omega)/\omega$ 

A difference in arrival time causes DJ.

Define "two-tone DJ": J =  $t_d(\omega_2) - t_d(\omega_1)$ =  $\phi_2/\omega_2 - \phi_1/\omega_1$  **Two-Tone DJ vs. Group Delay**   $GD_2 - GD_1 = d\phi/d\omega|_2 - d\phi/d\omega|_1$  is the difference in green slopes.  $J = \phi_2/\omega_2 - \phi_1/\omega_1$  is the difference in <u>red</u> slopes.



# Wrapped Phase

We're interested in the arrival time,  $t_d(\omega) = \phi/\omega$ , but phase gets wrapped around 360 degrees on network analyzers. This requires post-processing.

Physical Reality

Vector Network Analyzer



### Flat Phase

True phase is wrapped and requires post-processing. But flat phase is directly available:  $\phi_F = \phi - \phi_{lin}$ 



Vector Network Analyzer



#### **Two-Tone DJ from Flat Phase**

J can be expressed in terms of flat phase.

- Flat phase  $\phi_F(\omega) = \phi(\omega) \phi_{lin}(\omega)$ =  $\omega [t_d(\omega) - T_d]$
- We want  $J = t_d(\omega_2) t_d(\omega_1)$  $= \phi_{F_2}/\omega_2 \phi_{F_1}/\omega_1$
- The linear phase components cancel, giving the same form as for true phase.

#### **Two-Tone DJ from flat phase**

J is still the difference in slopes.



# Two-tone DJ specificationWe haveJ $= t_d(\omega_2) - t_d(\omega_1)$ $= \phi_{F_2}/\omega_2 - \phi_{F_1}/\omega_1$

Solving for  $\phi_{F_2}$ 

$$\phi_{F_2} = [\phi_{F_1} + \omega_1 J] \omega_2 / \omega_1$$

> This is the flat phase corresponding to peak two-tone DJ.

**Two-tone DJ specification** If we require  $|\mathbf{J}| > \mathbf{J}_{0}$ Then we get  $\phi_{F_2} > [\phi_{F_1} + \omega_1 J_o] \omega_2 / \omega_1$ for  $J > J_{0}$  $\phi_{F_2} < [\phi_{F_1} - \omega_1 J_o] \omega_2 / \omega_1$ for  $J < -J_{o}$ 

This is the flat phase required to <u>exceed</u> a minimum amount of peak two-tone DJ,  $J_0$ .

#### Multi-tone DJ

Fix  $\omega_1$  and generalize  $\omega_2$  to  $\omega_n = n \omega_1$ 

 $f_3 f_4 f_5$ 

If we choose:  $J_o = 0.15 \text{ UI} / 2 = 24 \text{ ps}$   $f_1 = 312.5 \text{ MHz}$ Then  $\phi_{F_n} > [\phi_{F_{312.5MHz}} + 0.047] \text{ n}$   $< [\phi_{F_{312.5MHz}} - 0.047] \text{ n}$  $\phi_F$  In gen

In general, some phase points must lie outside this area to get the minimum required DJ.

# Next Steps

- Check the theory
- Check against measured data
- Make recommendation in next ballot cycle

