Report from serial ad hoc

Piers Dawe

Irvine, January 2001

Issues over last two months

- Test methods
 - Jitter (Test patterns)
 - Dispersion penalty
- Noise contributors
 - Effect of very low extinction ratio
 - RIN value
 - Interferometric noise
- Polarization Mode Dispersion
 - Analysis by equalization ad hoc
 - Extra detail added to link model
- Update to link model reflects Nov. changes
- Not addressed: Management & control

Irvine, Jan. 2001

Report from serial ad hoc

Test methods

- Jitter
 - Test patternsReport by Bill Reysen
- Dispersion penalty
 Presentation by Peter Öhlen describes a test procedure

Irvine, Jan. 2001

Report from serial ad hoc

3

Noise contributors 1 of 2

- Effect of very low extinction ratio
 - Could cause additional noise through several mechanisms
 - Transmitter builders wouldn't want to go there anyway
 - Teleconference agreed to impose a minimum, proposed at 3 dB
- RIN value
 - Noted that 1550nm's -140dB/Hz appears very stringent for little benefit
 - Presentation by Peter Öhlen proposes relaxing this

Irvine, Jan. 2001

Report from serial ad hoc

Noise contributors 2 of 2

- Interferometric noise
 - Involves two or more reflections separated by not much optical loss
 - Exacerbated by low extinction ratio
 - May be associated with: single mode lasers e.g. DFBs single mode fibre high electrical bandwidth
 - Could affect 1300 nm serial
 - Presentation by Krister Fröjdh
 - Not a show-stopper

Irvine, Jan. 2001

Report from serial ad hoc

5

Polarization Mode Dispersion

- Analysis by equalization ad hoc
 - Mostly sorted out at Tampa in November
 - Equalization report by Oscar Agazzi
- DGDmax (the "worst case")
 - DGDmax >> typical PMD
 - For DGDmax at 40 km, 19 ps chosen
 - Extra formula added to link model
- Penalty appears <0.5dB
- Need to choose DGDmax for 10km

Irvine, Jan. 2001

Report from serial ad hoc

Extra formula added to link model

• Simple linear formula:

Effective BW1= 10^6*Ltarget/(3*DGDmax)
(MHz.km) (km) (ps)

Effective BW2 = Effective BW1/L

(MHz) (MHz.km) (km)

- Basic idea, BW = 1/(3.Delta_t), was known to the 802.3z community
- Notice two quantities with identical names but different units.

Irvine, Jan. 2001

Report from serial ad hoc

7

Update to link model

- Reflects changes voted in November
 - Proposal for 850 nm,
 - OMA definition of transmit power,
 - RIN and RIN(OMA) are distinguished,
 - MPN k now shown as k(OMA)
 - Worst extinction ratio is calculated,
 - 1550 nm powers raised by 2 dB,
 - A Polarization Mode Dispersion formula
- The new features can be overridden

Irvine, Jan. 2001

Report from serial ad hoc

Conclusions

- Some issues raised
- Some issues nearly closed
- Major outstanding issues
 - Jitter test method
 - Some progress, difficult issues
 - Test patterns span the sublayers, spec numbers don't?
 - Management & control of the sublayers
 - No progress, no familiarity or common understanding of the issues
 - Spans the layers in a big way

Irvine, Jan. 2001

Report from serial ad hoc