Dispersion penalty test - 1550 Serial -

Peter Öhlen & Krister Fröjdh Optillion

SMF Transmission at 1550 nm

- Different from multi-mode transmission
 - Dispersion [ps/nm/km] is the important figure
- RMS spectral width is not critical here
- The transmitter chirp is important
 - laser wavelength changes with modulation
 - combination of chirp and dispersion gives a penalty
- We need to test this
 - measurement of dispersion penalty is the most straight forward way to do this

Simulation results: DFB-EA @ 1550 nm after 40 km SMF

- Results from a simulation program in MatLab
- Simulation program freely available (but MatLab costs \$)

This does not show up in any measurement standardized so far

Outline of the TX & RX tests

- Idea: Simulate worst-case conditions
- RX test as in 1 GbE
 - uses a stressed eye
 - shape of the stressed eye might need modifications
- TX test is new, applies to 1550 serial:
 - degradation from dispersion and chirp → dispersion penalty
 - test the TX with: test fiber + golden RX

(In the following, * means that further work is needed)

Some definitions and parameters

Link insertion loss	IL	13	dB
Dispersion penalty (max)	DP _{max}	3	dB
Nominal sensitivity (OMA/2)	P _{sens}	-19.4	dBm
Link margin		2	dB
RMS Spectral width	redur	ndant	nm
Extinction ratio (min)	ER _{min}	3	dB

In the following, all powers are measured in OMA/2

TX test at TP3 – dispersion penalty

Measure $P_{DUT} = (P_2 \text{ at TP3 for BER} = 10^{-12})$ S = sensitivity (10⁻¹²) of the golden RX

Pass condition:

$$-DP = max(P_{DUT} - S, 0) < DP_{max} = 3 dB$$

Transmitter test at TP2

Measure P_{tx}, ER (?) and eye mask (?)

Pass conditions:

- $-P_{tx}>P_{sens}+IL+DP+margin=-4.4 dBm+DP$
- $ER > ER_{min}$
- "eye mask pass"

(might not be needed if jitter test is included in the dispersion test)

Test fiber characteristics

- A G.652 fiber with total dispersion larger than the worst-case 40km G.652 dispersion. The test fiber can be longer than 40km.
- Attenuation as small as possible to avoid use of ER-amplifier (a good fiber spool should be OK)
- Define dispersion measurement method for making the golden fiber: e.g. TIA/EIA-455-175A.

$$D(\lambda) > 40 \frac{0.093}{4} \left[\lambda - \frac{1300^4}{\lambda^3} \right] \text{ps/nm}$$

How to make the test fiber

- Get a fiber longer than 40 km
 - long should ensure that the total dispersion larger than required
- 2. Measure the dispersion of the fiber over the wavelength region of interest
- 3. If the total dispersion of the fiber is too large, cut back the fiber to lower the total dispersion
- 4. Verify that the total dispersion of the fiber is large enough
 - if necessary, return to step 3
- 5. Your fiber is ready to go!!

Golden RX

Golden receiver

- Reference receiver with clock recovery
- Sensitivity should be at least as good as the 10 GbE RX
- Decision threshold at average signal level
- (*) Bandwidth ??
- (*) Possibly with jitter input on the recovered clock.
 - Can this be implemented with commercially available equipment ??
- (*) Standard Bessel filter
 - another filter type might be more appropriate
 - the filter characteristic should be defined

Golden Rx

Golden Rx calibration

Measure the sensitivity S of the golden RX for BER=10⁻¹². (Without jitter input)

Golden Tx

Golden Tx

- High bandwidth (>15 GHz) modulator
- High quality eye, test for:
 - Symmetry and eye mask
 - Vertical eye closure < 0.5 dB in the center 20 % of the eye
 - (*) Rise/fall times < xx ps ??</p>
 - (*) Vertical eye closure < yy dB ??</p>
 - (*) Total jitter < zz dB ??</p>
- Chirp unimportant
- Moderate power needed

Action points for this test

- Test pattern for the penalty measurement
 - PRBS 2²³-1
- (*) Golden RX filter characteristics
 - Not obvious what the desired characteristics are
- (*) Decide on the amount of jitter introduced in the golden RX for the transmitter test
 - Is the TX eye mask test necessary ??
- (*) Can we test other thing in the same test ??
- (*) Cut-off frequencies for the RX (upper, lower)

Things not covered by the test

- For some parameters it is very difficult to generate a worst case condition
 - RIN and feedback sensitivity: This is dependent in a complicated way on the phase, polarisation, reflectance and distance to the feedback.
 - Polarization Mode Dispersion
- These degradations give penalties which have to be accounted for separately in the link budget

Simulation of compliance tests

- Vary chirp parameters of the TX
 - simple model of DFB-EA is used
- Vary bandwidth and filter order of RX
 - filter type is a bessel filter of order 1-4
 - bandwidth is 5.5 10.5 GHz
- Take TXs and RXs that barely pass the tests
- Test every TX with every RX over a 40 km link
- Calculate the link margin for each combination

Simulated link margin for "good" components

- The mean link margin is close to 2 dB
- There is a spread, but few combinations give a margin < 1.5 dB

Summary

- RX test similar to 1 GbE, might need modified shape of the stressed eye
- TX test with golden fiber
 - is a test for dispersion and chirp
 - other penalties like RIN are still allocated for in the link budget

Why trade off dispersion penalty and output power?

- In general: Margin = (P_{tx} IL DP) P_{sens}
- First proposal: (DP < 3 dB) & (P_{tx} > 0 dBm)

TX #1	TX #2	
0 dBm	-1.5 dBm	
3 dB	0.5 dB	
13 dB		
-18 dBm		
2 dB	3 dB	
YES	NO	
	0 dBm 3 dB 13 d -18 d 2 dB	

- We can do someting better than this:
 - Require margin > 2 dB \rightarrow P_{tx} max(DP,0) > -3 dBm