XGMII Transmit Direction Timing Clause 46

Haluk Aytac Bill Woodruff

Velio Communications

January 10-12, 2001

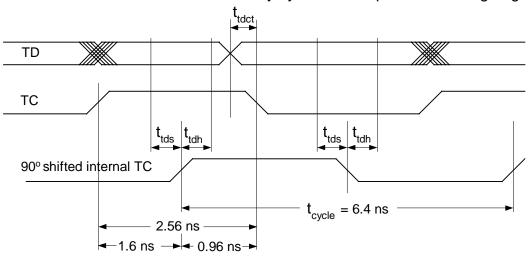
Irvine, CA

Comments

- Transmit direction timing benefits from being non symmetrical
- 1UI=320ps. @40% duty cycle DDR, 1/2 cycle = 256ps.
- Data is sampled at both clock edges
- Timing is easier to meet if setup/hold is skewed toward front half of UI

Source Synchronous Timing

Ttdct: Data, Clock Transition Window; Ttds, Ttdh: setup, hold; 40% Clock Duty Cycle


Tcycle *
$$(40\%)$$
 - Tcycle * $(1/4)$ > Ttdh + Ttdct

At 3.125 Gbps, this translates to:

$$960 \text{ ps} > \text{Ttdh} + \text{Ttdct}$$

The next page shows the other corner case that places a limit on Ttds.

TSH = 0 and TC with 40% duty cycle with respect to its rising edge

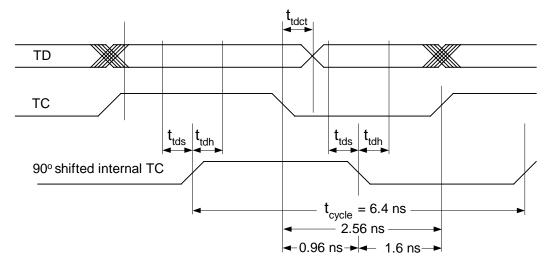
2.56 ns - 1.60 ns = 0.96 ns >
$$t_{tdh}$$
 + t_{tdct}

Source Synchronous Timing

For worse case: TC is 60% duty cycle from its rising edge:

Tcycle *
$$(40\%)$$
 - Tcycle * $(1/4)$ > Ttds + Ttdct

At 3.125 Gbps, this translates to:


$$960 \text{ ps} > \text{Ttds} + \text{Ttdct}$$

Adding the two pages:

$$1920 \text{ ps} > \text{Ttds} + \text{Ttdh} + 2 * \text{Ttdct}$$

If
$$Ttds + Ttdh = 960 \text{ ps}$$
 at destination, $Ttdct < 480 \text{ ps}$ (from – to +: 960 ps range)

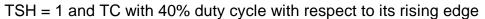
TSH = 0 and TC with 60% duty cycle with respect to its rising edge

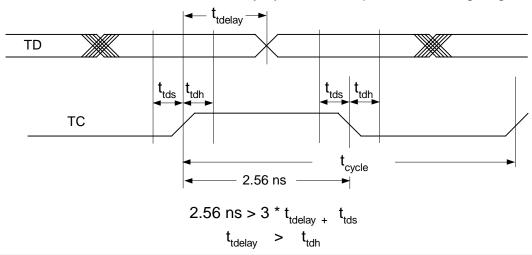
2.56 ns - 1.60 ns = 0.96 ns >
$$t_{tds}$$
 + t_{tdct}

Setup, Hold Timing

At 3.125 Gbps, this translates to:

$$2560 \text{ ps} > \text{Ttds} + \text{Ttdelay(max)}$$


$$2560 \text{ ps} - (\text{Ttds} + \text{Ttdh}) > \text{Ttdelay(max)} - \text{Ttdelay(min)}$$


If Ttds + Ttdh = 960 ps at destination

If Ttdh is 480 ps, Tdelay range is: 480 - 2080 ps at destination (at driver: 960 - 1600)

If Ttdh is 160 ps, Tdelay range is: 160 - 1760 ps at destination (at driver: 640 - 1280)

The first case gives a Tdelay(max) / Tdelay(min) ratio of 1.67, the second: 2.00

CONCLUSION:

For XGMII Transmit Direction Timing

- Setup and Hold Timing is Better than Source Synchronous
- Asymmetry in Setup and Hold more flexible for the ASIC/FPGA

	Recommend		Old	
	Driver	Receiver	Driver	Receiver
Tsetup	1280ps	800ps	960	480
Thold	640ps	160ps	960	480

