10GE WAN PHY: Physical Medium Attachment (PMA)

IEEE 802.3 Meeting, Albuquerque March 6-10, 2000

Norival Figueira, Paul Bottorff, David Martin,	
Tim Armstrong, Bijan Raahemi	Nortel Networks
Enrique Hernandez-Valencia	Lucent (Bell Labs)
Nevin Jones	Lucent Microelectronics
Pankaj Kumar	Level One/Intel
Bjørn Liencres	Juniper Networks
Tom Palkert	AMCC
Iain Verigin, Stuart Robinson, Tom Alexander	PMC Sierra
Nader Vijeh	Lantern Communications
Frederick Weniger	Vitesse

Based on Posted Document

"Proposal for a 10 Gigabit Ethernet WAN PHY"

—http://grouper.ieee.org/groups/802/3/10G_study/public/ nov99/figueira_2_1199.pdf

Agenda

- PMA/PMD interface
 - PCS/PMA interface is conceptual
- PMA frame and overheads
- PMA framing functions
 - Transmit and Receive PMA frame
- PMA frame synchronization process
- $x^7 + x^6 + 1$ frame-synchronous scrambler

Functional Block Diagram

Possibly Better Terminology

PMA Interfaces

- PCS/PMA ⇒ conceptual interface
- PMD interface
 - $tx_bit<15:0>$
 - 16-bit vector representing two octets received from the PMA
 - transitions synchronously with tx_bit_clk
 - tx_bit_clk
 - 622.08 MHz clock generated by the PMA
 - rx_bit<15:0>
 - Most recently received 16 bits (MSB first) from the MDI. It is a continuous and unaligned sequence of octets
 - transitions synchronously with rx_bit_clk
 - rx_bit_clk
 - 622.08 MHz clock generated by the PMD
 - all LVDS

PMA/PMD Interface

PMA Framing Functions

Transmit PMA Frame

- PMA framing of octet stream
- Scrambling of PMA frames using the x^7+x^6+1 frame-synchronous scrambler
- Transmission of resulting data stream to the PMD sublayer
 - depends on the PMD interface

PMA Framing Functions (cont.)

Receive PMA Frame

- Receiving of data stream from PMD sublayer
 - depends on PMD interface
- PMA frame synchronization and octet delineation
- Descrambling of PMA frames with the x⁷+x⁶+1 frame-synchronous scrambler

PMA Frame

STS-192c = Synchronous Transport Signal – level 192, c = concatenated SPE = Synchronous Payload Envelope

SPE Position

Octet Transmission Order

Top to bottom, row-by-row, left to right

Overhead Layers

Transport Overhead

Section Overhead: A1 and A2

- "Framing octets"
- Used by the PMA frame synchronization process to determine where octets and the PMA frame start
 - Transition from A1 to A2 octets is used for synchronization
- Fixed value:
 - A1 = 11110110
 - -42 = 00101000

Section Overhead: J0 and Z0

- J0 ("Section Trace")
 - Allows a receiver to verify its continued connection to the intended transmitter
 - Provisioned Value
 - When no value is provisioned, J0 shall be set to 00000001
- Z0 ('Section Growth")
 - Fixed value: 11001100

Section Overhead: B1

- "Section BIP-8"
- Used as a Section error monitoring function
- Calculated value:
 - BIP-8 code (using even parity)
 over all the bits of the last
 transmitted PMA frame <u>after</u>
 scrambling

Even parity over the bit 7 of all the octets of the PMA frame

NOTE

BIP-8 (Bit-Interleaved Parity-8) with even parity: The ith bit of the code provides even parity over the ith bit of all the covered octets.

BIP-8of the bit sequence 11110000 00001111 is 11111111.

Line Overhead: H1 and H2

"Payload Pointer"

 Allows the SPE to be dynamically aligned within the Envelope Capacity

Values:

- All H1 octets after the first one are set to the fixed value 10010011
- All H2 octets <u>after the first one</u> are set to the <u>fixed</u> value 11111111

Line Overhead: H1 and H2 (cont.)

First H1 and H2

- 16-bit word containing an NDF field and a 10-bit STS pointer in the range of 0 to 782
- Fixed values:
 - 10GE WAN PHY transmits H1 = 01100010 and H2 = 00001010,
 i.e., "normal" STS pointer = 522
- Receiver 10GE WAN PHY shall be able to process arbitrary NDF and STS pointer values (which may be changed by a transport network)

Line Overhead: H1/H2 and SPE Position

Line Overhead: H3

- "Pointer Action Bytes"
- Used for SPE frequency justification
 - Allows LTE to have slightly different clocks at the receiver and transmitter paths

Content:

- Carries 192 extra SPE octets in the event of a "negative pointer adjustment," i.e., which may be required when the receiver clock is faster than the transmitter clock
- Set to zero when not used

Line Overhead: K1, K2, and S1

K1 and K2

- Fixed values: K1 = 00000001, K2 = 00010000
 - K1 and K2 are used on the protection line for automatic protection switching signaling. Above settings indicate a working channel rather than the protection channel.

S1

- Fixed value: 00001111
 - Indicates quality clock information to receiver. Above setting indicates "don't use for synchronization"

Path Overhead and "Fixed Stuff"

Path Overhead: J1, B3, and C2

- J1 ("Path Trace")
 - Fixed value: 00000000
- B3 ("Path BIP-8")
 - Used as a Path error monitoring function
 - Calculated value: BIP-8 code (using even parity) over all the octets of the last transmitted SPE before (x^7+x^6+1) scrambling
- C2 ("Path Signal Label")
 - Identifies the contents of the STS SPE (i.e., 10GE WAN PHY)
 - Fixed value: 00011010 (provisional value assigned to 10 GE)

Path Overhead: G1

"Path Status"

 Conveys the <u>Path</u> terminating status and performance back to the transmitter (i.e., a PTE)

Calculated value:

- REI-P field = number of bit errors detected with the B3 octet of the last received SPE
- RDI-P field = Detected defects on the received signal (values are TBD)
 - Propose to support:
 Loss of Packet Delineation (LPD-P)
 Loss of Pointer (LOS-P)
 Payload Mismatch (PLM-P)

REI-P = Path Remote Error Indication RDI-P = Path Remote Defect Indication

REI-P field 0000 to 1000 = 0 to 8 errors when received, 1xx1 = 0 errors

Reference Diagram: Transmit PMA Frame

- Functional View
- PMA frame formation (stages)
 - (1) Path Overhead and fixed stuff columns
 - (2) Line Overhead
 - (3) Section Overhead
 - (4) Scramble with x⁷+x⁶+1 (first row of Section Overhead, i.e., A1/A2, J0, and Z0, is not scrambled)
 - (5) 16-bit words are transmitted to PMD (depends on PMD interface)

Reference Diagram: Receive PMA Frame

- Functional View
- PMA frame processing (stages)
 - (1) "Serialize" received PMD signal
 - (2) PMA frame synchronization and octet delineation
 - (3) Descramble with x⁷+x⁶+1 (first row of Section Overhead is not descrambled)
 - (4) Extract Section Overhead,
 Line Overhead, Path Overhead,
 Fixed Stuff columns
 - (5) Remaining octets = payload

Reference Diagram

PMA Frame Synchronization

- Uses A1/A2 transition (i.e., frame marker) for frame and octet delineation
- Looks for the A1/A2 framing pattern consistently
 - Expects it to appear once every 155520 octets (155520 = length of the PMA frame)
 - When the framing pattern appears in the right place enough times, correct frame synchronization is assumed

PMA Frame Synchronization (cont.)

Posted document

- Provides a set of rules to be satisfied by a PMA frame synchronization process
- Does not provide specific details on how a PMA frame synchronization process works
- Does not imply any specific implementation. Any PMA frame sync procedure that complies with the defined set of rules is acceptable
- This presentation shows the state diagram of a frame synchronization processes similar to the ones used in typical OC-192 equipment

PMA Frame Sync: START State

- Initial state
- Searches bit by bit for i correct A1 octets
- Moves to A1_ALIGN state on an exact match

PMA Frame Sync: A1_ALIGN State

PMA Frame Sync: PRESYNC State

n correct A1/A2 transition patterns

Incorrect A1/A2 transition pattern

PMA Frame Sync: SYNC State

n correct A1/A2 transition patterns

PMA Frame Sync: State Diagram

n correct A1/A2 transition patterns

Incorrect A1/A2 transition pattern

PMA Frame Sync. Performance

- Example for m = 4, A1/A2 transition pattern = 2 A1/A2s
 - Probability of frame loss $\approx 1.049 \times 10^6 \times BER^4$ = 1.049 \times 10⁻⁴² (@ BER = 10⁻¹²)
 - Average interval to frame loss
 - $\approx 3.7 \times 10^{30}$ years (@ BER = 10^{-12}) (> estimated age of observable universe, i.e., $\sim 10^{10}$ years)
- More robust implementations are possible, e.g., see
 - "10GE WAN PHY Delineation Performance"
 - http://grouper.ieee.org/groups/802/3/10G_study/public/ email_attach/delineation_perf.doc

x⁷+x⁶+1 Frame-Synchronous Scrambler

Purpose

 Assures that the optical interface signal has an adequate number of transitions for line rate clock recovery at the receiver

Scrambles

 All the octets of the "PMA frame" with the exception of the first row of the transport overhead

State is periodically resynchronized

 Scrambler state is reset to 11111111 on the most-significant bit of the octet following the last Z0 octet

Use of x^7+x^6+1 Scrambler

x⁷+x⁶+1 Scrambler/Descrambler

Scrambler/descrambler state = content of the 7-bit shift register

Bit Order of Scrambling/Descrambling

Most significant bit (LSB) first

Summary

- PMA/PMD interface
 - 16-bit LVDS
- PMA frame and overheads
 - Described proposed minimum set of overheads
- PMA framing functions
 - Described Transmit and Receive PMA frame processes
- PMA frame synchronization process
 - Described a typical frame synchronization process
- $x^7 + x^6 + 1$ frame-synchronous scrambler
 - Described functional diagram and resynchronization scheme