New WAN-PHY Approach Proposals

Feed Forward Rate Control (FFRC) & 10Gigabit
Ethernet Network Interface Extension (10GENIE) –

IEEE P802.3ae 6-10 March, 2000 Albuquerque, NM

Osamu ISHIDA and Haruhiko ICHINO

NTT Network Innovation Laboratories Yokosuka, Japan ishida@exa.onlab.ntt.co.jp

Goal of Today's Presentation

- Propose 802.3ae-native capability of WAN by defining two features on XAUI (10 Gigabit Attachment Unit Interface)
 - Feed-Forward Rate Control (FFRC) through autonegotiation that enables LAN-PHY access to WAN without 802.3x flow control.
 - 10 Gigabit Ethernet Network Interface Extension (10GENIE), that supports WAN signaling on LAN-Compatible PHY by using InterPacket Gap (IPG).

Outline of Today's Presentation

- Why WAH-PHY?
 - What is main capability of WAN?
 - Two alternatives for WAN providers, and their problems.
- WAN-Compatible PHY Issues:
 - Limited WAN-access design flexibility.
 - Suffers Duplicated frame-encapsulation.
 - No path to LAN-Native PHY in WAN.
- Propose two new features on XAUI;
 - Equip Feed-Forward Rate Control (FFRC).
 - Define 10GbE Network Interface Extension (10GENIE).

What is Capability of WAN? (1/2)

 Providing reliable PHY connection over multiple spans of fibers and Layer 1 relays.

What is Capability of WAN? (2/2)

- Providing reliable and maintainable connection over multiple spans of fibers and L1 relays; this requires
 - PHY bandwidth dedicated to WAN-specific signaling for remote monitoring and fault localization.
- SONET provides this capability by its domainnested overhead bytes in its specific frame.
- SONET is NOT the only solution: Digital Wrapper, Ethernet-native

WAN Providers Face Two Opportunities

- Reuse legacy SONET infrastructure.
 - Pack native Ethernet packets in SONET frame.
 - Administer fibers and regenerators with SONET network operation system. Fine! But
 - How far we should invest in expensive SONET gear?
- Forget SONET.
 - Reuse installed fibers or rent dark fibers.
 - Construct WAN with LAN-native PHY. Great! But
 - How to administer fibers & PHYs remotely?

WAN Providers Face Two Opportunities

Layer 1 Relay connects PHYs at Attachment Unit Interface (AUI) for maintainability.

ELTE: Ethernet Line Terminating Equipment

What do WAN providers want?

- Reusing installed SONET infrastructure;
 - compatibility with SONET regenerators, that requires
 - SONET framing at 9.95 Gb/s, and that requires
 - MAC/PLS rate-control to 9.58 Gb/s.
- More essentially, low-cost solution with capability of WAN operation;
 - compatibility with Network OpS, that requires
 - dedicated bandwidth at AUI for OAM&P, that supports
 - domain-nested fiber/PHY administration.

Our Vision of 802.3ae

- Support both WAN providers' opportunities:
 - Reuse SONFT infrastructure with minimal access cost.
 - Reuse fiber infrastructure with LAN-native PHY.
- WAN-Compatible PHY approach is halfway.
 - It has limitation on WAN-access design flexibility.
 - It will suffer duplicated frame encapsulation.
 - It provides *no solution for LAN-native PHY* in WAN.
- Our proposals on XAUI are new WAN-PHY approach to support both opportunities;
 - FFRC allows LAN-PHY access to WAN.
 - 10GENIE enables WAN signaling on LAN-Compatible PHY.

Outline of Today's Presentation

- Why WAH-PHY?
 - What is main capability of WAN?
 - Two alternatives for WAN providers, and their problems.
- WAN-Compatible PHY Issues:
 - Limited WAN-access design flexibility.
 - Suffers duplicated frame-encapsulation.
 - No path to LAN-Native PHY in WAN.
- Propose two new features on HARI;
 - Equip Feed-Forward Rate Control (FFRC).
 - Define 10GbE Network Interface Extension (10GENIE).

WAN-Compatible PHY *Issues* (1/2)

Limitation on WAN-Access Design Flexibility –

- WAN-C PHY requires L2 Relay buffer and backward flow control.
- Flow control over longer distances is *not* welcome.

Proposal 1 : FFRC (1/3)

- How FFRC Increases WAN-Access Design Flexibility -

ELTE: Ethernet Line Terminating Equipment

Proposal 1 : FFRC (2/3)

- Equip Feed-Forward Rate Control at XAUI -

Implementation example

Busy IDLEer: Unified LAN/WAN PHY Proposal - H. Frazier - January, 2000 http://grouper.ieee.org/groups/802/3/10G_study/public/jan00/frazier_1_0100.pdf

- MAC rate is monitored and regulated at XAUI.
- All PHY support both 10Gb/s and 9.58 Gb/s MAC rates, and is set through auto-negotiation process.
- Feed-back rate control by serial PCS may co-exist.

XGXS = XGMII Extender Sublayer PCS = Physical Coding Sublayer

XGMII = 10 Gigabit Media Independent Interface XAUI = 10 Gigabit Attachment Unit Interface PMA = Physical Medium Attachment PMD = Physical Medium Dependent

Proposal 1 : FFRC (3/3)

- Pros and Cons -

- Increase WAN-Access design flexibility.
- Expand LAN-PHY market, which will
- Enhance economies of scale.
- Some cost burden to LAN-PHY
 - Add rate provisioner and BUSY IDLEer at XGXS.
 - simple IDLE counter will be enough for rate provisioning.
 - Add an auto-negotiation process.

Outline of Today's Presentation

- Why WAH-PHY?
 - What is main capability of WAN?
 - Two alternatives for WAN providers, and their problems.
- WAN-Compatible PHY Issues:
 - Limited WAN-access design flexibility.
 - Suffers duplicated frame-encapsulation.
 - No path to LAN-Native PHY in WAN.
- Propose two new features on XAUI;
 - Equip Feed-Forward Rate Control (FFRC).
 - Define 10GbE Network Interface Extension (10GENIE).

WAN-Compatible PHY *Issues* (2/3)

- Duplicated Frame Encapsulation -

- ITU-T may recommend G.709 'Network Node Interface for the Optical Transport Network (OTN)' in 02/2001, where another frame 'Digital Wrapper' will provide upto-date domain-nestable overhead bytes for WAN signaling.
- SONET framing will be excessive just for OTN access, while WAN providers may still require remote fiber/PHY administration in access.

ELTE: Ethernet Line Terminating Equipment

FEC: Forward Error Correction

WAN-Compatible PHY *Issues* (3/3)

No solution for LAN-native PHY in WAN -

Construct WAN without SONET

How to administrate fibers & PHYs remotely?

Layer 1 Relay connects PHYs at Attachment Unit Interface (AUI) for maintainability.

ELTE: Ethernet Line Terminating Equipment

Proposal 2 : 10GENIE (1/6)

- -10 Gigabit Ethernet Network Interface Extension -
- New WAN-PHY approach:
 - LAN-Compatible PHY in WAN
- Implement 'nestable OAM&P bytes' into IPG

- It's an extension: no influence on LAN-PHY
 - LAN-PHY ignores Info bytes, treats them as just IPG.

Proposal 2 : 10GENIE (2/6)

Implementing WAN extension on XAUI

XGMII = 10 Gigabit Media Independent Interface XAUI = 10 Gigabit Attachment Unit Interface PCS = Physical Coding Sublayer

XGXS = XGMII Extender Sublayer PMA = Physical Medium Attachment PMD = Physical Medium Dependent

Proposal 2 : 10GENIE (3/6)

- Implementation Example Similar to FC-AL -
- IDLE ordered set in IPG is occasionally replaced by Extended IDLE ordered set.
 - This concept is used in Fibre Channel for arbitration.
 - E-IDLE example: (-) / K28.5 / ID1 / ID2 / DATA /
 - / ID1 /, / ID2 /, and / DATA / are valid 8B/10B data characters, and have some restriction on their disparity.
 - / ID1 / indicates 10GENIE. (probably reserved for further extensions.)
 - / ID2 / indicates what kind of signaling in what domain.
 - / DATA / carries signaling, such as Bit-Interleaved Parity.
 - LAN-PHY should not distinguish E-IDLE from IDLE.

Proposal 2 : 10GENIE (4/6)

- What Should Be Defined by Std.? -
- All E-IDLE should be just IDLE for MAC/XGXS.
 - MAC/XGXS transmits normal IDLE alone.
 - IDLE and E-IDLE are removable without disparity control.
 - Serial PCS is transparent to E-IDLE.
- Define minimal interoperable Extended-IDLE for
 - nested BER monitoring, alarm forwarding, path tracing,
 - Data Communication Channel (DCC)
- Define rules for vender-specific extention.
 - Valid definition must be established by Std.
 - Unassigned SONET overhead bytes are a bad example.

Proposal 2 : 10GENIE (5/6)

Applications: WAN Access and LAN-Compatible PHY—

Proposal 2 : 10GENIE (6/6)

- Pros and Cons -
 - LAN-PHY unification at customer site
 - enjoy economies of scale
 - enjoy unified PHY maintenance
 - 802.3ae-native capability of WAN signaling
 - enhance economies of scale on PHY hardware
 - enjoy compatibility with WAN operation system (OpS)
 - pave the way to replace SONET with OTN infrastructure.
 - Some constraint on
 - XGXS coding to allow IDLE extension, and
 - Serial PCS for extended IDLE transparency.

Summary

- Propose 802.3ae-native capability of WAN by defining two features on XAUI. XAUI = 10 Gigabit Attachment Unit Interface
 - FFRC (Feed-Forward Rate Control) enables LAN-PHY access to WAN without 802 3x flow control
 - 10GENIE (10 Gigabit Ethernet Network Interface Extension) supports WAN signaling without SONET.
- 10GENIE and FFRC accelerate true ubiquitous Ethernet and its economies of scale.

Backup Foils

What is SONET? (1/5)

- SONET OC192 Framing (9.96 Gb/s) -

What is SONET? (2/5)

- SONET function -

- SONET is virtual wiring in fiber cascades, where
 - wire is called 'Path',
 - fiber cascades are called 'Line', and
 - each fiber is called 'Section'.
- SONET realizes three functions:
 - bundling hundreds of Paths into Line by TDM
 - Path-by-Path byte-stuffing (Sync.) by pointers
 - hierarchical OAM&P* by using overhead bytes
 - * Operations, Administration, Management, and Provisioning

What is SONET? (3/5)

- SONET Architecture -

- LTE synchronizes Path by Path with each pointer offset & stuffing.
- Regenerator is jitter-sensitive since transmit clock is the recovered received clock of the previous Section.

What is SONET? (4/5)

- What Will Happen in 10 GbE WAN-Compatible PHY? -

SONET provides just one function:

- (bundling hundreds of Paths into Line by TDM)
- (Path-by-Path byte-stuffing (Sync.) by pointers)
- 3 nested domain OAM&P by using OH bytes

OAM&P = Operations, Administration, Maintenance, and Provisioning

What is SONET/SDH? (5/5)

- Nested-domain OAM&P with Over-Head (OH) bytes -
- WAN providers administer fibers & regenerators remotely and hierarchically.

- Path/Line OH is for end-end signal trace, error-rate monitor, protection switching, ...
- Section OH is for remote monitor, alarm forwarding, fault localization, ...

WAN-Compatible PHY *Issues*

- WAN-Compatible PHY approach was proposed:
 - Ether on SONET (EOS) LITE, and 64B/66B on SONET.
- Their SONET framing provides best compatibility with installed SONET regenerators and network OpS.
- It has limited WAN-access design flexibility.
- It will suffer duplicated frame encapsulation.
- It provides no solution for LAN-native PHY in WAN.

Proposal 2 : 10GENIE

- What Function Should Be Implemented? -

Support minimal WAN signaling, such as

- Bit-Interleaved Parity (BIP) for fiber/PHY administration
- protection switching trigger (K1/K2) for premier restoration
- path trace identifier (J0) for assure correct cross-connection
- Data Communication Channel (DCC) for extra signaling
-

Support flexible domain OAM&P, similar to

- Path, Tandem Connection, Line, Section (SDH) [G.707]
- Protected domain (ATM) [I.610]
- Nested administrative domain (OTN) [to be G.709]

