

T1X1.5/99-268r1 Overview

David W. Martin

March 6-10, 2000

Albuquerque, NM

Agenda

- Context
- Background on T1X1.5 EoS
- Overview of T1X1.5/99-268r1

March 6-10, 2000

Context

- Liaison from T1X1 referring to T1X1.5/99-268r1 received by 802.3 at November Kauai plenary
- 802.3 EoS Ad Hoc drafted a liaison reply
- Liaison reply tabled at closing 802.3 plenary

Background on T1X1.5 EoS

- Ethernet over SONET definition
- SONET connection types

Ethernet over SONET: In Words

- a) A proposed methodology for mapping 802.3 Ethernet MAC frames intact into SONET payloads.
- b) The SONET *Path* termination is at the interface between the SONET mux and the EoS mapping function.
- c) This gets mapped over a system fully compliant with all requirements of SONET/SDH standards.
- d) Enables service providers to provide services and service level agreements (SLAs) based on SONET/SDH performance and operations management.

^{*} for more definitions refer to http://grouper.ieee.org/groups/802/3/10G_study/public/jan00/law_1_0100.pdf

Ethernet over SONET: As OSI layer model

Pt-Pt SONET

SONET

802.3 LAN Segment

PTE - Path Termination Equipment

Shared Bandwidth SONET

SONET

802.3 LAN Segment

PTE - Path Termination Equipment

Shared Bandwidth SONET

- a) The multiplexing of layer 2 client signals into the same SONET path.
- b) The SONET path bandwidth may be less than the sum of the multiple client signals.
- c) Requires client signals to be encapsulated with transport node/port addressing info, used by layer 2 aware transport equipment.
- d) May be over linear pt-pt or ring topologies.

Overview of T1X1.5/99-268r1

- Line code termination
- MAC frame encapsulation
- Mapping into SONET
- Benefits

Line Code Termination

- 802.3 line code is terminated & MAC frames are recovered
- Provides optimum transport bandwidth efficiency
 - Manchester encode of 100% eliminated
 - 8B/10B encode of 25% eliminated
- Enables a common mapping for MAC frames, independent of interface

MAC Frame Encap/Mapping: Pt-Pt

MAC Frame Encap/Mapping: Shared Bandwidth

Red fields specific to shared bandwidth mapping

MAC Frame Encap/Mapping (cont'd)

Core header for pt-pt connections:

- Length (2B) of payload + extended header
- Type (1B) to identify payload type and header format
- cHEC (2B) (core Header Error Check) over header & for delineation
- 5B reserved for other uses (also preserves 802.3 preamble structure of 8B)

Additional core header fields for shared bandwidth connections:

- TTL (1B) (Time To Live) to avoid endless propagation in a ring
- Destination/Source Port (1B) to address a port on a multi-port circuit pack
- PHB (6b) (Per Hop Behavior) for discard eligibility & class of service
- CN (2b) (Congestion Notification) for use with congestion avoidance schemes
- 2B spare

MAC Frame Encap/Mapping (cont'd)

Plus extended header for shared bandwidth connections:

- Destination/Source MAC (12B) to address a circuit pack at a node
- eHEC (2B) (extended Header Error Check) over extended header

Idle frames:

- a core header with *Length*=10B
- replaces IPGs or when no data from MAC to send

Mapping Into SONET

- mapping into contiguously concatenated SPE shown
- another option is mapping into virtually concatenated SPEs

SPE = Synchronous Payload Envelope

Benefits

- The mapping is uniform for all Ethernet interfaces/rates. It is also common for both linear and ring transport topologies. This minimizes cost by maximizing equipment commonality.
- All the relevant MAC layer information, from Destination address through FCS inclusive, is preserved intact by the mapping. This maintains a clear distinction between layers.
- Since the FCS is preserved, the native Ethernet error detection capability is protected. Consequently, the error detection capability is not degraded.
- Because the mapping doesn't inflate the frame length in a nondeterministic way (e.g. like HDLC), the throughput capacity and performance is predictable. This eases network planning.
- A robust delineation mechanism is utilized.