Report on test methodologies from the February 11th and 12th lab work

Objective: Test the tests

Stretch Camnitz- LightWave Division Agilent Technologies Test Equipment Group stretch_camnitz@agilent.com

Proposal to have an open laboratory prior to the February interim meeting

- Proposed procedures must be validated on several devices
- Follow up and refinement of "Raleigh" modifications through subsequent serial PMD teleconferences
- Test beds built during between Jan 18th and Feb 11th
- A "Public" lab (open to anyone)
- A "Private" lab (those who signed up were given 3 hours of private use on the test beds)
- Eight participants

Some results from the January meeting in Raleigh

- New proposals for stressed eye receiver testing
- New proposals for transmitter jitter testing
- Report on root causes for difficulties in performing jitter bathtub stressed receiver test measurements
 - Verification needed on "real" devices

Test system overview

- Transmitter test bed:
 - Jitter bathtub measurement
 - Transmitter
 Dispersion Penalty
 (TDP) measurement
- Receiver test bed:
 - "Old" stressed eye
 - "Simplified" Stress

D4.1 vs D4.0: What hasn't Changed:

D4.1 vs D4.0: Two Major Changes:

"Simplified" Stress: Additive Amplitude ISI

Contract Between TX and RX

Bathtub jitter

- TX must produce less jitter than stressed eye
- RX must successfully receive stressed eye

- TDP methodology
- TX must produce a smaller sensitivity penalty than stressed eye
- RX must successfully receive stressed eye

Matrix of measured Penalties

from Raleigh, NC, January 2002 Matrix of measured Penalties

Test methods Report Mar 12, 2002

Effect of Test Equipment non-ideality

Jitter Bathtub method

- Tend to over-estimate jitter of TX
- Tend to over-estimate jitter in stressed RX test signal
- These two effects tend to partially cancel out
- But, not all test equipment has equal non-ideality
- How does jitter combine?

- TDP method
- Substitutional method:
 - first order compensation for jitter in measurement RX
- But what about differences between reference RX?

Test System Block Diagram

Receiver Test

Original Stress vs Simplified Stress

Original Stress:

Emphasis on LPF

Added RJ

- Hard to Adjust Filter
- Need BT measurement to Calibrate
- Non-ideal Frequency Response:
 - larger pattern dependence
 - larger Sigma, smaller W

Simplified Stress:

Additive Amplitude ISI

Sinusoidal Jitter

- Easier to Adjust ISI, SJ
- Measure with Oscilloscope
- More ideal frequency response
- Smaller pattern dependence
- W larger, Sigma is smaller

Clean signal- 7.5 GHz BT filter

Test methods Report Mar 12, 2002

Original stress-Pattern dependence

PRBS 31 – Nostress vs Simplified Stress

PRBS 31 – Nostress vs Simplified Stress Vertical "Q" Plot

Transmitter Test

•

•

Bathtub Curve vs TDP

Bathtub Jitter Measurement

- Tests Low and High Probability
 Jitter
- Does not test Vertical Eye Closure
 - Left to eye mask

TDP

- Classical TDP tests Vertical Eye
 Closure
- TDP with Offset sampling point tests Vertical Eye Closure and Jitter
- Sensitivity to Jitter depends on choice of Sampling Point Offset

RX Frequency response

TDP Meas and BT measurement on Simpl stress

Reference RX penalties; 7.5 GHz RX BT filter

Sensitivity Plot

OMA

Effect of Decision Point Offset- ref RX

Direct Tx No Fiber (Pier's Mask)

Test methods Report Mar 12, 2002

Tx Test; PRBS31; No Stress; "10 km" fiber

TDP +- 0.1 UI; TX through Fiber

TDP correlation to BT curves

TDP Table- TX results

	Reference RX	RX DUT
	+/- 0.1 UI	
Clean Source	calibration	
TX DUT	1 to 3 dB penalty	
Stressed Eye	3.5 dB penalty	

Receiver Test

Rx BER vs OMA – Simplified Stress vs Nostress

OMA

SJ ~.25UI

Test methods Report Mar 12, 2002

Rx Sensitivity with Simplified Stress

TDP Table

	Reference RX	RX DUT
	+/- 0.1 UI	
Clean Source	calibration	Nominal sensitivity
		-18 to –11 dBm
TX DUT	1 to 3 dB penalty	
Stressed Eye	3.5 dB penalty	3.5-7 dB penalty OMA=-11 to -5 dBm

- Simplified Stress BT curves qualitatively similar to actual DML TX curves
- TDP measured with +-0.1 UI decision point offset correlates with BT curve
- All TX DUTs measured smaller penalties than simplified stress
- Simplified stress induced moderate to large power penalties in RX DUTs
- Simplified Stress/TDP methodology seems to be workable using optimized test Receiver