XAUI/XGXS Proposal

By:

Don Alderrou, nSerial; Vipul Bhatt, Finisar; Brad Booth, Intel; Kirk Bovil, Blazel; Ed Chang, NetWorth Technologies; Robert Dahlgren, SV Photonics; Kevin Daines, World Wide Packets; Joel Dedrick, AANetcom; Thomas Dineen, Dineen Consulting; Schelto van Doorn, Infineon; Steve Dreyer, nSerial; Richard Dugan, Agilent; John Ewen, IBM; Howard Frazier, Cisco; Mark Feuerstraeter, Intel; Eric Grann, Blaze; Steve Haddock, Extreme Networks; Chuck Haymes, IBM; Ken Herrity, Blaze; Jay Hoge, JDS Uniphase; Osamu Ishida, NTT; Pat Kelly, Intel; Van Lewing, QED; David Lynch, Gennum; Jeff Lynch, IBM; Henning Lysdal, Giga; Kreg Martin, Brocade Communications; Ron Miller, Brocade Communications; Shimon Muller, Sun; Bob Musk, JDS Uniphase; Brian Peters, Blaze; Mark Ritter, IBM; Shawn Rogers, Texas Instruments; Koichiro Seto, Hitachi Cable; Dave Simmons, Gennum; Jeff Stai, Qlogic; Daniel Svensson, SwitchCore; Steve Swanson, Corning; Rich Taborek, nSerial; Bharat Tailor, Gennum; Jim Tavacoli, Accelerant Networks; Hemant Thakkar; Tom Truman, Bell Labs/Lucent; Rick Walker, Agilent; Fred Weniger, Vitesse; Bill Wiedemann, Blaze; Jim Yokouchi, Sumitomo Electric; Jason Yorks, Cielo; Nariman Yousefi, Broadcom;

Presentation Purpose

- Update of March '00 proposal
 - http://grouper.ieee.org/groups/802/3/ae/public/mar00/taborek_1_0300.pdf
- Inclusion of 8B/10B Idle EMI Reduction proposal
 - http://grouper.ieee.org/groups/802/3/ae/public/may00/taborek_1_0500.pdf
- Otherwise, no new material is introduced
- Proposal is ready for Prime Time!

May 23-25, 2000

IEEE 802.3ae Task Force

Description

- XAUI = 10 Gigabit eXtended Attachment Unit Interface
- XGXS = XGMII eXtender Sublayer
- CDR-based, 4 lane serial, self-timed interface
- 3.125 Gbaud, 8B/10B encoded over 20" FR-4 PCB traces
- PHY and Protocol independent scalable architecture
- Convenient implementation partition
- May be implemented in CMOS, BiCMOS, SiGe
- Direct mapping of RS/XGMII data to/from PCS
 - XGMII proposed by Howard Frazier, Cisco, et. al.
 http://grouper.ieee.org/groups/802/3/10G_study/public/july99/frazier_1_0799.pdf

IEEE 802.3ae

Task Force

XAUI/XGXS Proposal

Applications

- Increased XGMII reach
- Low pin count interface = implementation flexibility
- Ease link design with multiple jitter domains
- Lower power consumption re: XGMII
- Common transceiver module interface, enables SFF
- PCS/PMA agent for WWDM
 - Avoids excessive penalties for all other PHYs
- Self-timed interface eliminates high-speed interface clocks

Ottawa, ON May 23-25, 2000 Task Force XAUI/XGXS Proposal Slide 4

Highlights

- Increased reach
 - XGMII is ~3" (~7 cm)
 - XAUI is ~20" (~50 cm)
- Lower connection count
 - XGMII is 74 wires (2 sets of 32 data, 4 control & 1 clock)
 - XAUI is 16 wires (2 sets of 4 differential pairs)
- Built-in jitter control
 - Chip-to-chip interconnect degrades XGMII source-synchronous clock
 - XAUI self-timed interface enables jitter attenuation at the receiver

IEEE 802.3ae Task Force XAUI/XGXS Proposal Slide 5

Location - Layer Model

MDI = Medium Dependent Interface

XGMII = 10 Gigabit Media Independent Interface XAUI = 10 Gigabit Attachment Unit Interface

PCS = Physical Coding Sublayer

XGXS = XGMII Extender Sublayer

PMA = Physical Medium Attachment

PHY = Physical Layer Device

PMD = Physical Medium Dependent

IEEE 802.3ae

Task Force

XAUI/XGXS Proposal

Slide 6

Implementation Example

IEEE 802.3ae
Task Force

XAUI/XGXS Proposal

XGXS Functions

- Use 8B/10B transmission code
- Perform column striping across 4 independent serial lanes
 - Identified as lane 0, lane 1, lane 2, lane 3
- Perform XAUI lane and interface (link) synchronization
- Idle pattern adequate for link initialization
- Perform lane-to-lane deskew
- Perform clock tolerance compensation
- Provide robust packet delimiters
- Perform error control to prevent error propagation

Task Force XAUI/XGXS Proposal Slide 8

Basic Code Groups

- Similar to GbE
 - No even/odd alignment, new Skip and Align

```
/A/ K28.3 (Align) - Lane deskew via code-group alignment
```

```
/K/ K28.5 (Sync) - Synchronization, EOP Padding
```

```
/R/ K28.0 (Skip) - Clock tolerance compensation
```

```
/S/ K27.7 (Start) - Start-of-Packet (SOP), Lane 0 ID
```

```
/T/ K29.7 (Terminate) - End-of-Packet (EOP)
```

/E/ K30.7 (Error) - Signaled upon detection of error

/d/ Dxx.y (data) - Packet data

"Extra" Code Groups

The following are included in related proposals:

```
/Kb/ K28.1 (Busy Sync) - Synchronization/Rate control /Rb/ K23.7 (Busy Skip) - Clock tolerance comp/Rate control /LS/ K28.1 (Link Signaling) - LSS proposal
```

The following remaining 8B/10B special code-groups are not used:

K28.2¹, K28.4, K28.6, K28.7

1 Reserved for Fibre Channel usage in NCITS T11 10 GFC project proposals

Data Mapping: MAC to XGMII

MAC is a bit serial interface

XGMII is a 32 bit data + 4 control bit interface

MAC octets represented by D7:0 map to 4 consecutive XGMII Data Bundles in rotating fashion of n=0:3

Data Mapping: XGMII to XAUI

IEEE 802.3ae

Data Mapping Example

RS/XGMII

D<7:0,K0>	Ι	I	S	d_p	d	d	 d	d	d	$d_{\mathbf{f}}$	I	I	I	I
D<15:8,K1>	Ι	Ι	d_p	d_p	d	d	 d	d	d_{f}	T	Ι	Ι	Ι	Ι
D<23:16,K2>	I	I	d_p	d_p	d	d	 d	d	$d_{\mathbf{f}}$	Ι	Ι	Ι	Ι	I
D<31:24,K3>	Ι	I	d_p	d_s	d	d	 d	d	d_{f}	I	I	I	I	I

XGXS Encoded Data

Lane 0	K	R	S	d_p	d	d	 d	d	d	d_{f}	A	K	R	K
Lane 1	K	R	d_p	d_p	d	d	 d	d	d_{f}	T	A	K	R	K
Lane 2	K	R	d_p	d_p	d	d	 d	d	d_{f}	K	A	K	R	K
Lane 3	K	R	d_p	d_{s}	d	d	 d	d	d_{f}	K	A	K	R	K

IEEE 802.3ae

Task Force

XAUI/XGXS Proposal

Slide 13

Idle Encoding

- Idle (no data to send) is conveyed by the randomized pattern /A/K/R/:
 - +T-A+K-R-K+R+R+K-K+R+K-R-K+R+R+R+K (example pattern) -K+R+R+K-R-R-K+R+K-R-R-K+R+K-K+R+A... on each XAUI lane
- /A/ spacing is randomized: 16 min, 32 max (80-bit deskew capability)
- /K/R/s between /A/s randomly selected (no discrete spectrum) See http://grouper.ieee.org/groups/802/3/ae/public/may00/taborek_1_0500.pdf for additional details
- /A/, /K/ and /R/ are all a hamming distance of 3 from each other
- Minimum IPG pattern is /A/K/R/ sequence, in order

IEEE 802.3ae Task Force

XAUI/XGXS Proposal

Synchronization

- XAUI 4-lane link synchronization is a 2 step process
 - 1. Acquire sync on all 4 lanes individually;
 - 2. Align/deskew synchronized lanes.
- Loss-of-Sync on any lane results in XAUI link Loss-of-Sync
- Lane sync acquisition similar to 1000BASE-X PCS
 - Use hysteresis to preclude false sync and Loss-of-Sync due to bit errors
 - Re-synchronize only upon Loss-of-Sync (i.e. no "hot-sync")
 - Periodic Align (/A/-column) check a good link health check
- XAUI link sync is fast, straightforward and reliable
- See backup slides for an illustration

Task Force XAUI/XGXS Proposal Slide 15

Deskew

- Skew is imparted by active and passive link elements
- XGXS deskew accounts for all skew present at the Rx
- Lane deskew performed by alignment to deskew pattern present in Idle/IPG stream: Align /A/ code-groups in all lanes

Skew Source	#	Skew	Total Skew
SerDes Tx	1	1 UI	1 UI
PCB	2	1 UI	2 UI
Medium	1	<16 UI	<16 UI
SerDes Rx	1	20 UI	20 UI
Total			<39 UI

- 40 UI deskew pattern needs to be 80 bits
- /A/ column Idle/IPG spacing is 16 columns (160 bits) minimum

XGXS Deskew

Skewed data at receiver input. Skew ~18 bits

Deskew lanes by lining up Align code-groups

Lane 0	K	K	R	A	K	R	R	K	K	R	K	R
Lane 1	K	K	R	A	K	R	R	K	K	R	K	R
Lane 2	K	K	R	A	K	R	R	K	K	R	K	R
Lane 3	K	K	R	A	K	R	R	K	K	R	K	R

IEEE 802.3ae

Task Force

XAUI/XGXS Proposal

Slide 17

Clock Tolerance Compensation

- The XGXS must restore the temporal fidelity of the signal by:
- a. Repeating by amplifying and/or reshaping the signal w/<100% jitter transfer;
- b. Retiming the data to a timing reference other than the received data.
- Idle pattern Skip (/R/) columns may be inserted/removed to adjust for clock tolerance differences due to retiming only
 - Skip columns may be inserted anywhere in Idle stream
 - Proper disparity Skip required in each lane
 - Any Skip column may be removed.
- Clock tolerance for 1518 byte packet @ ±100 ppm is 0.76 UI/lane
 - A few bytes of elasticity buffering is sufficient to wait for many (~13) frames in case a Skip column is not available for removal.

Task Force XAUI/XGXS Proposal Slide 18

Skip Column Insert Example

Lane 0	K	R	S	d_p	d	d	 d	d	d	d_{f}	A	K	R	K
Lane 1	K	R	d_p	d_p	d	d	 d	d	d_{f}	T	A	K	R	K
Lane 2	K	R	d_p	d_p	d	d	 d	d	$d_{\mathbf{f}}$	K	A	K	R	K
Lane 3	K	R	d_p	d_s	d	d	 d	d	d_{f}	K	A	K	R	K

Skip column inserted here

IEEE 802.3ae

Task Force

X

XAUI/XGXS Proposal

Slide 19

Error Control

- Packets with detected errors must be aborted
 - 8B/10B code violation detection may be propagated forward
 - IPG special code groups are chosen to ensure that running disparity errors are detected
- Rule: Signal Error code upon detected error or in column containing EOP if the error is detected in the column following the EOP.
 - Error is signaled per lane since disparity is checked per lane
- XGXS checks received packets for proper formation

Ottawa, ON May 23-25, 2000 Task Force XAUI/XGXS Proposal Slide 20

Electrical

- Electrical interface is based on low swing AC coupled differential interface
- AC coupling is required at receiver inputs
- Link compliance point is at the receiver
- Transmitter may use equalization as long as receiver specifications are not exceeded

XAUI Rx/Tx & Interconnect

Transmitter Parameter	Value
Vo Dif(max)	800 mV
Vo Dif(min)	500 mV
Voh	AC
Vol	AC
lout nominal	6.5 mA
Differential Skew(max)	15 ps

Receiver Parameter	Value
Vin Dif(max)	1000 mV
Vin Dif(min)	175 mV
Loss 50W	9.1 dB
Differential Skew(max)	75 ps

May 23-25, 2000

Interconnect Parameter	Value
Tr/Tf Min, 20%-80%	60 ps ¹
Tr/Tf Max, 20%-80%	131 ps ¹
PCB Impedance	100 ±10 W
Connector Impedance	100 ±30 W
Source Impedance	100 ±20 W
Load Termination	100 ±20 W
Return Loss	10 dB ²

- 1. Optional if transmitter meets the receiver jitter and eye mask with golden PCB
- 2. SerDes inputs must meet the return loss from 100 MHz to 2.5 GHz (0.8 x 3.125 Gbaud)

IEEE 802.3ae

XAUI Loss Budget

Item	Loss
Connector Loss	1 dB
NEXT + FEXT Loss	0.75 dB
PCB Loss	7.35 dB
Loss Budget	9.1 dB

PCB Condition	Normal	Worst
MSTL Loss Max (dB/in)	0.32	0.43
Max Distance (in)	23"	17.1"

Normal PCB was assumed with loss tangent of 0.22. Worst case it was assumed high temperature and humidity 85/85.

Better FR4 grade may reduce loss by as much as 50%.

PCB Condition	Normal	Worst
STL Loss Max (dB/in)	0.41	0.55
Max Distance (in)	18"	13.4"

HP test measurement for 20" line showed 5.2 dB loss or 0.26dB/ in based on the eye loss, the loss assumed here is very conservative.

IEEE 802.3ae
Task Force

Э

XAUI/XGXS Proposal

Slide 23

XAUI Jitter

Jitter Compliance Point	Tx ¹	Rx
Deterministic Jitter	0.17 UI	0.41 UI
Total Jitter	0.35 UI ²	0.65 UI
1-sigma RJ @ max DJ for 10 ⁻¹² BER ³	4.11 ps	5.49 ps
1-sigma RJ @ max DJ for 10 ⁻¹³ BER ³	3.92 ps	5.23 ps

- 1. Tx point is for reference. Rx point is for compliance.
- 2. The SerDes component should have better jitter performance than specified here to allow for system noise.
- 3. 1-Sigma value listed here are at maximum DJ, if the DJ value is smaller then the 1-Sigma RJ may increase to the total jitter value.

IEEE 802.3ae

Summary

- Meets HSSG Objectives and PAR 5 Criteria
- Provides PHY, Protocol & Application independence
- Based on generic 10 Gbps chip-to-chip interconnect
- Resembles simple and familiar 1000BASE-X PHY
- Low Complexity, Low Latency, Quick Synchronizing
- May be integrated into MAC/RS ASIC, eliminating XGMII

IEEE 802.3ae Task Force

Backup Slides

XGXS Synchronization state diagrams

Ottawa, ON May 23-25, 2000 Task Force

XAUI/XGXS Proposal

