Low Voltage Signaling for Higher Performance and Lower Cost

(Based on Dec. 9, 1997 presentation given by the author to FC Standard)

Ali Ghiasi aghiasi@broadcom.com

Nov. 8, 2000

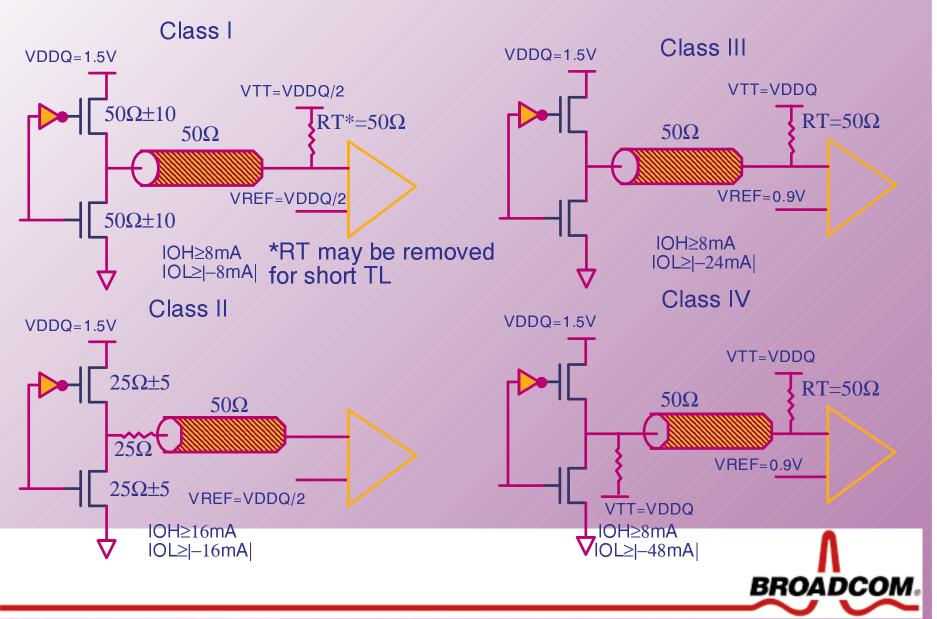
Broadcom Corporation

Abstract

- **♦** 10 Gigabit Ethernet switch may have several hundreds I/O associated with XGMII ⇒ EMI.
 - Reduce Amplitude, power of 2 improvement.
 - Impedance control driver and 50 Ω TL.
- **♦** Reduce Power Dissipation
 - Reduce Amplitude.
- **♦ Terminated Logic for XGMII**
 - SSTL ~ 1.25 V swing
 - HSTL ~ 0.75 V swing •

Why Reduce the Signal Amplitude

- **♦ XGMII** with 74 I/O operating at 1250 mV of swing will generate significant EMI and SSN.
- **♦** Reducing the signal swing reduces EMI and SSN.
- ♦ Significant amount of money is spend on EMI Means: real metal enclosure and etc.
- ♦ Lower PD typical SSTL2 ~25mW and ~15mW for HSTL.
- **♦** Lower slow rate ⇒faster bit rate.
- **♦** Compatible with advance CMOS sub 0.15 um logic family.



Background on HSTL

- **♦** HSTL ⇒ High Speed Transceiver Logic EIA/JESD 8-6.
- ◆ A 1.5 V output buffer supply voltage based.
- **◆** Developed for flexibility, compatibility with most IC process and voltage independent.
- **♦** Typical swing is about 750 mV.
- ♦ It has 4 classes:
 - Symmetrical parallel terminated loads, VTT=1/2VDDQ.
 - Class II Externally source series term., VTT=NA.
 - Class III Asymmetrically || terminated load, VTT= VDDQ.
 - Class IV Symmetrical Double || terminated, VTT=VDDQ.
- **♦** It can also be made differential.

Schematics of HSTL Classes

Recommendation

- **♦** We adapt HSTL Class I with optional load termination for XGMII and control signals.
- ◆ Optional load termination may be require for drivers with poor impedance control or long >6" PCB traces.
- ♦ HSTL Class I will reduce power by about 40% compare to existing SSTL2.
- **♦** HSTL Class I will be compatible with future generation of CMOS as MDIO controls will have long life.
- ♦ HSTL with 0.75 V swing is even suited to operate the XGMII at 624 Mb/s with careful design.

