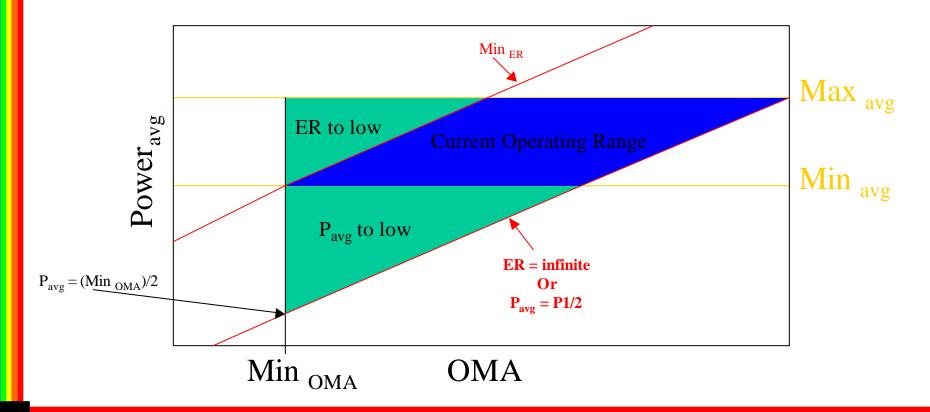
OMA Benefits For WWDM


Ken Herrity
Blaze Network Products

OMA Review

- Current Method
 - Average Power $P_{avg} = ((P_1 + P_0) / 2)$
 - Extinction Ratio $ER = (P_1 / P_0)$
- Why do we need to know ER?
 - Since Receiver is AC coupled, the OMA at the receiver not Pavg is what really matters.
 - Effectively we use the Average Power combined with Extinction ratio to ensure that we achieve a minimum OMA.
 - $OMA = 2 * P_{avg} * ((ER 1)/(ER + 1))$
- Why not specify OMA directly?


General Benefits of OMA

 More freedom to set bias and modulation currents.

General Benefits of OMA

 Less sensitive to changes in Threshold Current.

General Benefits of OMA

- Since there is no need to set bias near threshold to maintain ER
 - Lasers will operate faster (Laser is slowest near threshold)
 - Drive electronics may be simplified
 - Thermal compensation of bias current may not be necessary.
 - Active monitoring may not be necessary.

Benefits For WWDM

- 4 Different Wavelengths probably implies:
 - 4 different threshold currents
 - 4 different slope efficiencies
- Individual driver programming may not be required as long as:
 - Above variations can be reasonably bounded.
 - Extinction Ratio is not critical.

Benefits For WWDM

 If active monitoring is not required, optics and electronics for WWDM systems can be greatly simplified.