LSS for Link Status Mechanism

Osamu Ishida (NTT)

IEEE P802.3ae Plenary Meeting, Tampa, FL, November 6-9, 2000

Tampa, FL Nov 6-9, 2000 10 Gigabit Ethernet LSS for Link Status Mechanism Slide 1

Presentation Purpose

- Review of Sept'00 LSS Proposal*
 - * Link Signaling Sublayer Proposal by 47 individuals from 25 companies http://grouper.ieee.org/groups/802/3/ae/public/sep00/ishida 1 0900.pdf
 - Concept of Link signaling
 - Mechanism of Break Link (BL) and Remote Fault (RF)
- Update receive detection state diagrams for LSS
 - Improve robustness by adopting a watchdog timer and hysteresis
- Propose overall link status mechanism with LSS
 - Define RF&BL mechanism in Reconciliation Sublayer
 - Up-the-stack BL signaling by pure Idle generation in PCS/XGXS

What is Link Signaling?

- Convey status/control register bits to its Link Partner
 - RF (remote fault): fault detected on the receive path
 - BL (break link) : link_reset by STA
 - optional OAM&P*: WAN-PHY compatible trace identifier, e.t.c.
 - * Operations, Administration, Management, and Provisioning
- Use an Idle Column as the vehicle
 - Signal on the data path, not on the MDIO nor on "Pins"
 - Replace an Idle Column with an Link Signaling Column
- Signal repeatedly once every time frame (e.g. 125 us)
 - Independent of PCS/XGXS varieties
 - Less frequent to avoid XAUI EMI
 - Sufficiently frequent for robust detection

Link Signaling Example

PHY stream after RS

after XGXS or X PCS (8b/10b)

after R PCS (64b/66b*)

header	10	10	10	10	10	10	
Lane 0	 2d 0000	1e	 1e	4b 00000	 2d 0000	1e T	
Lane 1	 $I d_1$	<u> </u>	 _	d_1	 $I d_1$		
Lane 2	 $I d_2$	上宁	 上宁	d_2	 $I d_2$	ШŤ	
Lane 3	 d_3			d_3 I	 $I d_3$		

LS: Link Signaling Identifier K28.4 (0x9c,1)

IEEE 802.3ae 10 Gigabit Ethernet LSS for Link Status Mechanism

^{*} See Page 19 (Optional Code Features) of http://www.ieee802.org/3/ae/public/jul00/walker-1-0700.pdf

BL&RF Mechanism on LSS (1/2)

- Transmit the Link Status Column once every 125 us
 - Covey BL/NoBL and RF/NoRF simultaneously
 - Assert BL when STA triggers link_reset
 - Assert RF when failure is being detected on the receive path
- Define Link Status simply as a Boolean variable
 - link_status = !(!rx_in_sync + BL_rcvd) * !(RF_rcvd + break_link)
 - !rx_in_sync + BL_rcvd : failure on the receive path
 - And hence RF is being sent on the transmit path
 - RF_rcvd + break_link : failure on the transmit path
 - That's why RF is being or will be detected on the receive path
- Send Idles whenever link_status is False
 - Use Idle stream for link initialization

IEEE 802.3ae
10 Gigabit Ethernet

BL&RF Mechanism on LSS (2/2)

LS Code Transmit State Diagram

Link State Diagram

Notes: break_link = link_reset + power_down remote fault = !rx in sync + BL rcvd

In this mechanism RF is sent whenever the local receiver is not ready to use.

Nov 6-9, 2000

Receiving break link (BL_rcvd) asserts remote_fault since Link Partner wants to reset Local Device's PHY. Whether or not resetting the receiver sync status is an implementation.

IEEE 802.3ae 10 Gigabit Ethernet

What is Updated from Sept'00?

- Improved robustness in Link Signaling Detection
 - Add a watch dog timer
 - Link Signaling Failure should be detectable
 - Clear link status if the Link Status Column is not detected for greater than 1 millisecond
 - Adopt hysteresis for BL&RF detection
 - Protect from misdetection during error burst
 - Require 8 consistent Link Status Column detection before setting/clearing the BL/RF received status

IEEE 802.3ae 10 Gigabit Ethernet LSS for Link Status Mechanism

Rx Detection State Diagrams; Updated

RX LS Detection S. D.

```
LS_detect = (TYPE=Z)
(lane0=K28.4) +
(lane1=D18.2) +
(lane2=D18.2) +
```



```
RF detect = LS detect *
             (lane3 = RF);
NoRF detect = LS detect *
             (lane3 = NR);
RF = (D14.6 + D9.2 +
             D10.1 + D13.5);
NR = (D18.2 + D21.6 +
             D22.5 + D17.1);
BL detect = LS detect *
             (lane3 = BL);
NoBL detect = LS detect *
             (lane3 = NB);
BL = (D21.6 + D9.2 +
             D17.1 + D13.5):
NB = (D18.2 + D14.6 +
             D22.5 + D10.1);
```

RX RF Detection S. D.

RX BL Detection S. D.

IEEE 802.3ae

10 Gigabit Ethernet

Overall Link Status Bit

- Requirement
 - Link Aggregation refers to the unique link status bit
 - This status bit should be cleared in real time whenever
 - something wrong on the entire receive path, such as
 - Rx can not establish the synchronization
 - Break Link is received
 - something wrong on the entire transmit path, such as
 - Remote Fault is received
 - Break Link is transmitted (e.g. STA is resetting the link status)
 - MDIO is less useful for this real time management
 - while it provides fault debugging capability within the Local Device
- Issue in 802.3ae
 - Cumulative link status over multiple intermediate links
 - XGXS-to-XGXS, PCS-to-(WIS-to-WIS)-to-PCS,XGXS-to-XGXS

How About Up-the-stack BL Signaling?

- Local Device's PCS detects !rx in sync, then asserts BL on the receive path
 - PCS generates Idle stream with interspersed BL-asserted Link Status Column
- RS receives BL, then asserts RF on the transmit path based on the BL&RF mechanism

Simpler PCS Still Works!

- Local Device's PCS detects !rx_in_sync, then just generates Idles on the receive path
 - Idle stream with no Link Status Column yields BL_rcvd in RS
- Local Device's RS then asserts RF on the transmit path based on the BL&RF mechanism

Link Status Mechanism Proposals

- Adopt LSS and its BL&RF mechanism in Reconciliation Sublayer
 - This does not preclude BL&RF mechanism in XGXS/PCS instead of RS as far as no exposure interface is implemented between them
 - Generate a Link Status Column for BL/RF on the transmit path
 - Detect BL/RF on the receive path with a watchdog timer and hysteresis
 - Set or clear link status simply as a Boolean variable as
 - link status = !BL rcvd * !RF rcvd
- Minimize the requirement in the other PHY sublayers
 - Just be transparent to the Link Status Column
 - Produce Idles out when they do not have input sync
 - None of LSS, Idle equivalent, and its translation is required in XGXS/PCS
 - This does not preclude intelligent XGXS/PCS/PMA that could process the Link Signaling Column for optional OAM&P
 - OAM&P would also be useful for remote fault-debugging

IEEE 802.3ae