WIS Fault Isolation

IEEE P802.3ae Nov.6-10, 2000 Tampa

Nortel Networks
Cisco Systems
DomiNet Systems
WorldCom
Intel/Level One
Vitesse
Force10 Networks
Lantern Communications
PMC-Sierra
Paxonet Communications

Fault Isolation

- Two presentations at the May/Ottawa interim discussed the value in having some additional WIS overhead processing to facilitate 10GE WAN PHY fault isolation:
 - http://grouper.ieee.org/groups/802/3/ae/public/may00/bynum_1_0500.pdf
 - http://grouper.ieee.org/groups/802/3/ae/public/may00/nicholl_1_0500.pdf
- This presentation addresses those requests.

WIS Location

WIS Overhead Layers

Single-Ended Maintenance: Soft Failure

 Ability to determine a degradation of the transmit link from Enterprise or Carrier end.

Example - Path layer view only (D1.0)

 B3 violations are fed back in G1, but lefthand router cannot determine where the errors occurred.

Example - Line layer view only

 B2 violations are fed back in M1, so lefthand router can determine whether errors occurred in its outgoing link, but not the overall path.

Example – Both line & path layer views

 By comparing M1 & G1 values, lefthand router can determine whether errors occurred on its outgoing link or beyond.

B2 (Line BIP-8) Definition

Even parity calculated over all bit 1s from entire STS-1 frame excluding section overhead

Even parity calculated over all bit 8s from entire STS-1 frame excluding section overhead

There are 192 B2 Bytes in the WIS frame, one in each STS-1

- In the transmit direction the WIS calculates & inserts the B2s
- In the receive direction the WIS calculates Line BIP-8s & compares with the extracted B2 values, discrepancies are B2 code violations

M1 (REI-L) Definition

- In the transmit direction the WIS inserts the summed B2 violation count (truncated to 255) from its partner receiver into the outgoing M1 timeslot
- In the receive direction the WIS simply extracts the M1 value

Single-Ended Maintenance: Hard Failure

 Ability to determine a failure of the transmit link from Enterprise or Carrier end.

Example - Path layer view only (D1.0)

 RDI-P is fed back in G1, but lefthand router cannot determine where the fault occurred.

Example - Line layer view only

Lefthand router unaware that a failure occurred downstream.

Line Fail = LOS + LOF + AIS-L LOS = Loss Of Signal LOF = Loss Of Frame AIS-L = Alarm Indication Signal-Line layer **RDI-L = Remote Defect Indication-Line layer**

Example – Both line & path layer views

 By comparing RDI-L state & G1, lefthand router can determine whether a fault occurred on its outgoing link or beyond.

> RDI-L = Remote Defect Indication-Line layer AIS-P = Alarm Indication Signal-Path layer RDI-P = Remote Defect Indication-Path layer

AIS-L Definition

- WIS normally generates K2 = 00010000
- The setting of bits 6-8 = 111 would occur in the Carrier's network at a Regen
- WIS only needs to detect AIS-L as a trigger to generate RDI-L

RDI-L Definition

- WIS normally generates K2 = 00010000
- The setting of bits 6-8 = 110 is done by WIS only upon detection of a receive Line Fail

Line Fail = LOS + LOF + AIS-L LOS = Loss Of Signal LOF = Loss Of Frame AIS-L = Alarm Indication Signal-Line layer RDI-L = Remote Defect Indication-Line layer

Path Connectivity

Ability to ensure correct connectivity across a large network.

Path Connectivity Verification

Verify tapped J1 value is the expected value.

DWDM Backbone

J1 Path Trace

 A path overhead byte sent once per frame (every 125usec) comprising a 16 byte label, verified by intended receiver and potentially at intermediate points.

PCS Loss of Sync

- "PCS loss of sync" (i.e. inability to sync to 64b/66b frames) is passed to WIS where it is integrated to become "LCD-P", then the outgoing G1 byte is coded with "Payload Defect" in RDI-P field
 - notifies source of a payload problem (i.e. in PCS sublayer)

Transport Overhead (D1.0)

Transport Overhead - Addition

Path Overhead and "Fixed Stuff" (D1.0)

Path Overhead - Addition

Overhead Addition Summary

- B2 calculation/insertion & error detection/reporting
 - four 192x8 DPRAMs + ~1000 gates
- M1 insertion & reporting
 - ~70 flops + ~500 gates
- RDI-L insertion & detection/reporting, plus AIS-L detection/reporting
 - ~20 flops + ~200 gates
- J1 (provisionable) insertion & reporting
 - ~300 gates + two 16x8 RAMs
- PCS loss of sync integration to LCD-P
 - ~5 flops + 50 gates

How to Modify the WIS Clause

- Proposes changes to the definitions by cross-references contained in the "WIS Update" presentation approved for D1.0
 - http://grouper.ieee.org/groups/802/3/ae/public/jul00/figueira_1_0700.pdf
- WIS Clause still written by cross-referencing ANSI T1.416-1999
 - ANSI T1.416-1999 can be obtained at the following URL: http://www.atis.org/atis/docstore/index.asp

Changes to Cross-References

- Section 4 "Common Criteria"
 - Referring to Table 1 (SONET Overheads at NIs)
 - Add support for the following

Section: B2 and M1

Path: J1

- Note: B2 and M1 support are to be added to the WIS draft per instructions contained in the presentation indicated below for the case where these overheads are supported.
 - "WIS Update" used as the basis for D1.0
 http://grouper.ieee.org/groups/802/3/ae/public/jul00/figueira 1 0700.pdf
- Note: J1 support is to be added to the WIS draft per instructions (to follow) referencing ANSI T1.269-2000 Section 5 & Annex A.

Changes to Cross-References (cont'd)

Section 4 "Common Criteria" (cont'd)

- Change the following overhead to be partially supported
 - Line: K2 (set to 00010xxx)
 - Where bits 6-8* (i.e., xxx) shall be set to either RDI-L or 000. No other codes for bits 6-8 shall be generated by the WIS.
 - A receiver WIS shall only process bits 6-8 of K2. All other bits of K2 shall be ignored
 - A receiver WIS shall only detect AIS-L and RDI-L codes on bits 6-8 of received K2. All other codes (including 000) shall be ignored and shall have no effect on the receiver WIS
 - Note: K1/K2 settings still indicate a working channel rather than the protection channel

(*) This slide uses the SONET bit numbering convention, where bits are numbered from 1 (MSB) to 8 (LSB) and bit 1 is the leftmost bit.

Changes to Cross-References (cont'd)

Section 7 "Maintenance"

Section 7.1, Table 2 "Near-end events and far-end reports"
 Add support for the following

Defects: AIS-L (as defined in Section 7.4.1)

The WIS shall not generate AIS-L, but shall

detect the presence of AIS-L in the received signal

RDI-L (as defined in Section 7.4.1)

- Note: BIP-N(L) and REI-L support is to be added to the WIS draft per instructions contained in the presentation indicated below for the case where B2 and M1 are supported.
 - "WIS Update" used as the basis for D1.0
 http://grouper.ieee.org/groups/802/3/ae/public/jul00/figueira_1_0700.pdf

Changes to Cross-References (cont'd)

- Section 7 "Maintenance" (cont'd)
 - Add LCD-P to the list of supported defects:
 - Uses same G1 RDI-P Payload Defect code as PLM-P
 - LCD-P is indicated when the PCS loss of sync signal is continuously asserted for a period of 3 ms
 - The LCD defect terminates when the PCS loss of sync signal is de-asserted for a period of 1 ms
 - PCS Loss of sync is a signal from the PCS and defined in the PCS clause