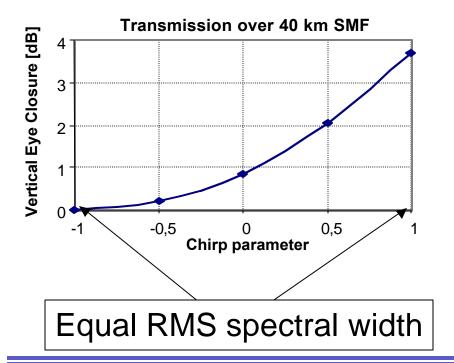
Golden test for dispersion penalty - 1550 Serial -


Peter Öhlen, Krister Fröjdh (Optillion)

SMF Transmission at 1550 nm

- Different from multi-mode transmission
 - Dispersion [ps/nm/km] is the important figure
- RMS spectral width is not critical here
- The transmitter chirp is important
 - laser wavelength changes with modulation
 - combination of chirp and dispersion gives a penalty
- PROBLEM:
 - Today's spec does not consider the interaction of chirp and dispersion in SMF transmission

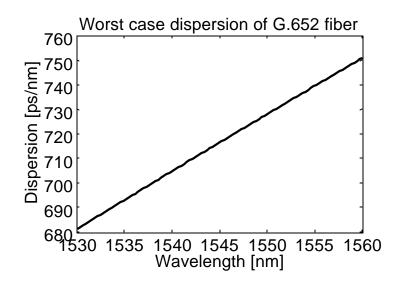
Simulation results: DFB-EA @ 1550 nm after 40 km SMF

- Results from a simulation program in MatLab
- Simulation program freely available (but MatLab costs \$)

This does not show up in any measurement standardized so far

Outline of the golden test

- Idea: Simulate worst-case conditions
- RX test as in 1 GbE
 - uses a stressed eye
 - shape of the stressed eye might need modifications
- TX test is new, applies to 1550 serial:
 - degradation from dispersion and chirp → dispersion penalty
 - test the TX with: golden fiber + golden RX


(In the following, * means that further work is needed)

Golden fiber

- Specify minimum dispersion over full wavelength region (worst case G.652 dispersion)
- Attenuation as small as possible to avoid use of ER-amplifier (a good fiber spool should be OK)
- Define dispersion
 measurement method
 for making the golden
 fiber: e.g. TIA/EIA-455-175A.

$$D(\ddot{e}) > 40 \frac{0.093}{4} \left[\ddot{e} - \frac{1300^4}{\ddot{e}^3} \right] \text{ps/nm}$$

Golden RX

Golden receiver

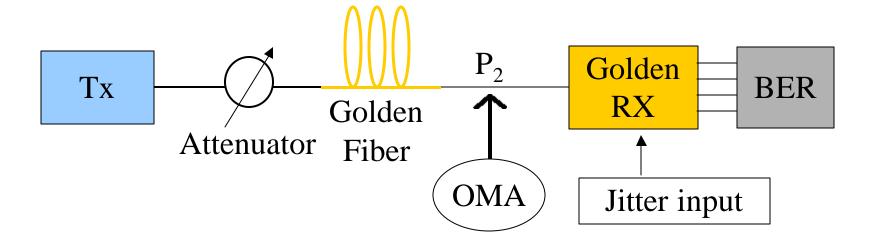

- Standard reference receiver with clock recovery but with jitter input
- Can be implemented with a commercially available reference receiver + BER.
- Standard Bessel filter (*)
 - another filter type might be more appropriate
 - the filter characteristic should be defined
- Sensitivity at infinite extinction ratio= P₀
 - $-P_0 \le -18 \text{ dBm}$

Table values *

(Exact values to be defined)

Link insertion loss	IL	13	dB
Dispersion penalty (max)	DP _{max}	3	dB
Extinction ratio (min)	ER _{min}	4	dB
Link margin		2	dB
Nominal sensitivity	P _{sens}	-18	dBm
RMS Spectral width	redundant nm		

TX test at TP3 – dispersion penalty

Pass condition:

$$- DP = P_2 - P_0 < DP_{max} = 3 dB$$

Transmitter test at TP2

Measure P_{fx},ER, and eye mask

Pass conditions:

- $ER > ER_{min}$
- $-P_{tx}>P_{sens}+IL+DP+margin=0dBm$ (* more on this condition later)
- "eye mask pass"

(might not be needed)

Possible further improvement: P_{tx} condition at TP2

- In general: Margin = (P_{tx} IL DP) P_{sens}
- First proposal: (DP < 3 dB) & (P_{tx} > 0 dBm)

Comparison of 2 transmitters:	TX #1	TX #2	_
Ptx	0 dBm	-1.5 dBm	This
Dispersion penalty	3 dB	0.5 dB	This transceivery good
Link loss	13 dB		Very Work
Sensitivity (non-stressed)	-18 dBm		9000
Margin	2 dB	3 dB	
PASS with current condition	YES	NO	

- We can do someting better than this:
 - Require margin > 2 dB \rightarrow P_{tx} max(DP,0) > -3 dBm

Remaining issues for this test

- Cut-off frequencies for the RX (upper, lower)
- Golden RX filter characteristics
- Decide on the amount of jitter/phase degradation for the transmitter test
 - Is the TX eye mask test necessary ??
- Can we test other thing in the same test ??

Summary

- Rx test similar to 1 GbE, might need modified shape of the stressed eye
- Tx test with golden fiber
 - is a test for dispersion and chirp
 - other penalties like RIN are still allocated for in the link budget

Alternative test methods

- Eye mask after fiber
 - power level difficult
 - BER floors not detected
- Use a "bad golden TX" to degrade the eye optically with dispersive fiber
 - we still need to specify the stressed eye, but on the optical side
 - we still need a "good golden TX" for the golden RX calibration
 - hard to reproduce

Backup

Things not covered by the test

- For some parameters it is very difficult to generate a worst case condition
 - RIN and feedback sensitivity: This is dependent in a complicated way on the phase, polarisation, reflectance and distance to the feedback.
- For some parameters it is not obvious which case it the worst case:
 - Frequency response of the receiver.

Possible measurements

- Spectral width:
 - Does not give sufficient information
- Direct chirp measurement:
 - different types of chirp and complex measurement
- Dispersion penalty
 - this is what really matters
 - fairly simple

Golden Tx

Golden transmitter

- High bandwidth (>10 GHz*) modulator
- Chirp unimportant
- Moderate power needed
- Wavelength should not be important for a good RX design
 - The critical point is at the upper limit, 1565
 nm