Link Status Reporting and Initialization

Prepared By:

Don Alderrou, nSerial; Tom Alexander, PMC-Sierra; Brad Booth, Intel; Gary Bourque, PMC-Sierra; Rhett Brikovskis, Lantern Communications; Ben Brown, AMCC; Bob Grow, Intel; Osamu Ishida, NTT; Shimon Muller, Sun; Stuart Robinson, PMC-Sierra; Rich Taborek, nSerial; Pat Thaler, Agilent; Jonathan Thatcher, World Wide Packets; Ed Turner, 3Com;

Presentation Purpose

- Describe 10G Link Architecture
- Specify Link Initialization Protocol
- Identify Link/PHY Status Conditions
- Propose Link Status Transport
- Identify Ancillary Issues
- Summary

Link Architecture

- 10GE Link Has More Sublayers and Components Than 1GE
 - LAN & WAN PHY
 - Serial and WDM (4-Lane) PMDs
 - Parallel Bus Extender: XAUI
 - WAN Serial PMA to Common Xcvr: SUPI
 - WDM Repeaters to Insure Signal Fidelity
 - Multiple CODECs and Framers Possible

1G to 10G PHY Differences

Result → Transceiver Module Includes Media SerDes

Link Status

- Required In Both Directions
- Link Status

RS "Top Level" & Link Elements (E.g. XGXS, etc.)

- 1 = Link Up, OK to Send Packets
- 0 = Link Down, Block Packets
- Link is Up When:
 - PHY is Reset and Operational
 - All Link Receivers Receiving (Signal Detect)
 - No Link Error Conditions are Being Reported
 - All CODECs and Framers Are In Sync
- Link Status is AND of All PHY/Link OK Conditions
 - Link Status OK = All Signals OK & All Protocols OK

Link/PHY Status Conditions

- Serial I/O Signal Detect (SD)
 - Single/Multi-Lane, Optical/Copper
- Protocol Detect (PD). Includes:
 - CODEC Synchronization
 - Lane Alignment (Multi-Lane Only)
 - WIS Frame/Payload Acquisition
 - Link Status Report Recognized
- "Christmas Tree Light" Problem
 - Some Conditions Can't Get Past Others
 - E.g. Broke XAUI Hides PMD Signal Detect
 - "If You Can't Say Anything Good, Keep Quiet"

Signal Detect (SD)

- Reliable Receiver Operation Implies That a Reliable Signal Is Present
- Signal Detect is Link Reliability Check
 - Don't Bother Looking At Data if No SD
 - Circuitry In TIA for Optics, Serial I/O Rx
 - Applicable to Serial I/O, per I/O
 - Many SD Circuit Variations
 - Multiple SD Points Possible in Link
 - Need To Get SD To Link Status
 - Transport Req'd: Code, Pin, MDIO, etc.
 - Signal Detect Response µs To ms

Protocol Detect (PD)

- Includes All Link Status Conditions Associated With Link Data:
 - CODEC Lane Synchronization
 - Applicable to All 8b/10b and 64b/66b CODECs
 - Lane Alignment
 - Applicable to all 8b/10b Multi-Lane CODECs
 - WIS Frame/Payload Acquisition
 - Link Status Report Recognized
- Transport Req'd: Code, Pin, MDIO, etc.

Link Status Reporting

- Real Time Report Forwarding
 - Enables Rapid Link Fault Detection
 - Enables Failure Resilient 10GE Equipment
 - Report Transport
 - MDIO Too Slow. Not Applicable
 - Pins Are Expensive, N/A to Fiber-Optic Cable, Plain Silly For Serial I/O (Clockless, Coded Transport)
 - .: Real Time Reporting Should Be By Code/Protocol
- Link Debug/Fault Isolation Reporting
 - Non-Real Time. MDIO Is Adequate.

Link Status Report Requirements

- Purpose Is To Forward SD and PD Link Status
- Must Work For All Interfaces and Codes
- Must Handle Single and Multiple Lanes
- Must Be EMI-Friendly
- Should Be Simple. Must Be Robust.

Next: Specify Messages and Transport

Link Status Messages

- Signal and Protocol Errors May Be Combined for Forward Transport (I.e. Downstream)
 - No Need To Distinguish. Message May Be Lost.
 - E.g. No Signal, No Sync Anywhere Along Simplex Link
- Combine All SD/PD Into Status Messages
 - All Faults Along a Simplex Link Are Local Faults (LF)
 - LF Detected At RS Considered Remote Fault (RF)
 - LF Masks RF Message
 - RF Status Message Is Lost Upon Local Fault Detection
- Define Separate LF and RF Messages

Next: Specify Status Message Transport

Status Message Transport

- RF Issued From RS Only
- LF Issued From Intermediate Link Elements Only
 - E.g. XGXS, Retimer, SUPI
- Should Be Current CODEC Friendly
- Propose Leveraging 10GFC Signal Ordered-Set
 - Same Format As Start Delimiter: /K/D/D/D/
 - RS Alternates Signal With Idle Continuously
 - 8b/10b Continuous Signal after every ||A||
 - Recognized Upon 3 Consecutive Signal Occurrences
 - Both Are 8b/10b, 64b/66B, XGMII, XSBI, SUPI, WIS, etc. Compatible

Status Message Signaling

- A Status Message Signaling Condition Exists
 Whenever a Fault Condition Exists.
 - The Status Message Sets Link Status=FAIL
 - The Fault Condition Sets x.1.2 Link Status=FAIL
- Status Message Signaling Involves the Issuance of the Signal Protocol Indicating the LF or RF Message.
- RS Initiates RF Status Messages In Response to Reception of LF
- Intermediate Link Elements Initiate LF and Forward Status Messages
- Status Message Uses Signal Ordered-Set

8B/10B Status Signal Protocol

- Signal Is An Ordered-Set, Similar To Idle
- Format: /K28.2/Dxx.y/Dxx.y/Dxx.y/ (Similar To Start)
 - K28.2 Same As FC Sequence, Dxx.y TBD
- Signaled Continuously While Status Condition Exists
- Signal Inserted After ||A|| Into ||A||K||R|| Idle Stream

Signal Indicated In 8B/10B Idle Stream After Each ||A||

Link Initialization

- Consists of Only Idle Sequence in the Absence of Errors
- Includes Status Message Signaling in the Presence of Errors

Normal Operation

- Simultaneous A and B Power-Up and Reset
- Link Status=OK in Both A & B
- MAC Transmission Enabled In Both A & B
- No Handshakes or Negotiation

Remote Fault

- Device B Receiver Detects Fault
 - E.g. Fault In Cable Plant, Media Converter, etc.
- Link Status=FAIL In Device B
- Device B Signals RF To Device A
- Link Status=FAIL In Device A
- MAC Transmission Halted In Both A and B

Initialization Snapshot 1

- Device A Powered Up and Reset
- Device B Powered Down
- Device A Receiver Detects Fault
- Device A Signals RF To Device B
- Link Status=FAIL In Device A
- MAC Transmission Halted In Device A

Initialization Snapshot 2

- Device B Powers Up + Resets
- Device B Signals Idle To Device A
- Device B's Idle Hasn't Reached Device A Yet
- Link Status=FAIL In Both A and B
- MAC Transmission Halted In Both A and B

Initialization Snapshot 3

- Device A Receiver Detects Idle Sequence
- Device A Stops Sending RF To Device B
- Device A Sets Link Status=OK
- MAC Transmission Enabled In Device A
- Device A Idle Hasn't Reached Device B Yet
- When It Does It Becomes Normal Operation

PHY XSBI Error Example

Break Link Issue

- Break Link (BL) Historically Starts AN
 - No Apparent Need For BL in 10GE
 - If Desired, BL May Be Effected By Defining a Management Register Control bit for BL.
 - Note: BL May Become LF Upon Link Error
- Should Break Link Be Defined?
 - How Should It Be Signaled?
 - MAC Frame
 - MAC Control Frame
 - Link Status Signal

Summary

- Robust Link Status Recognition, Signaling and Reporting Protocol
- Link Status & Packet Transmission Is Mutually Exclusive
- Simple Link Initialization
- No Auto-Negotiation
- Synergy With 10GFC Protocol
- Link Status Consensus Achieved