Remote Fault & Break Link Proposal for 10-Gigabit Ethernet

Howard Frazier

Cisco Systems Inc.

Shimon Muller

Sun Microsystems Inc.

New Orleans; September 12, 2000

	1
IEEE 802.3ae	
10 Gigabit Ethernet	S. Muller - Sun

Outline

- Introduction
- Concept
- State Machines
- What About OAM&P?
- Summary

Introduction

- This proposal provides a <u>robust</u> mechanism for supporting two (and exactly two) primitives
 - Remote Fault
 - Indicates that a problem has been detected by the remote receiver
 - The source of the fault could be at:
 - Local transmitter
 - Interconnecting channel
 - Remote receiver
 - Break Link
 - Intended to reset the channel and re-start the synchronization process
- Both primitives indicate the occurrence of serious problems
 - Totally preclude data exchange

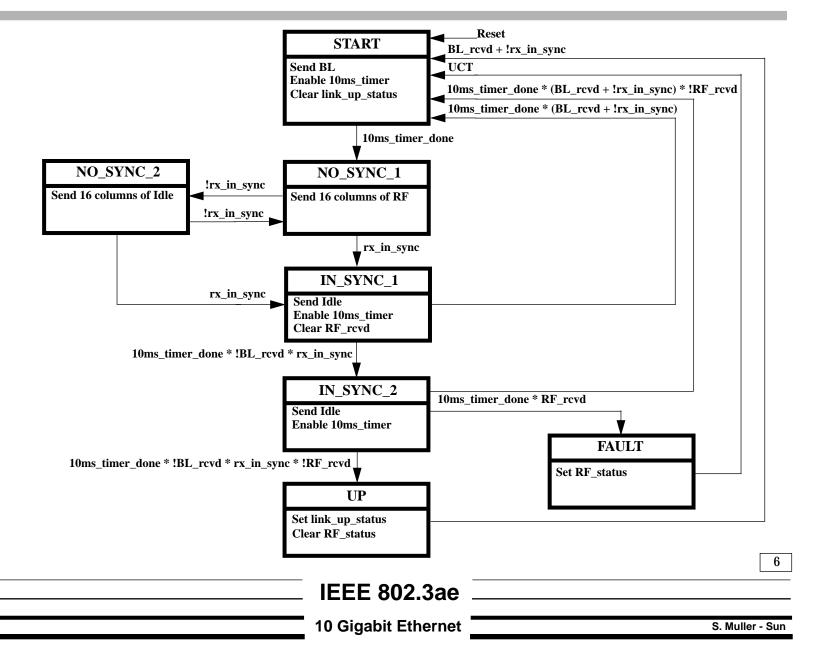
 IEEE 802.3ae	
10 Gigabit Ethernet	S. Muller - Sun

Concept

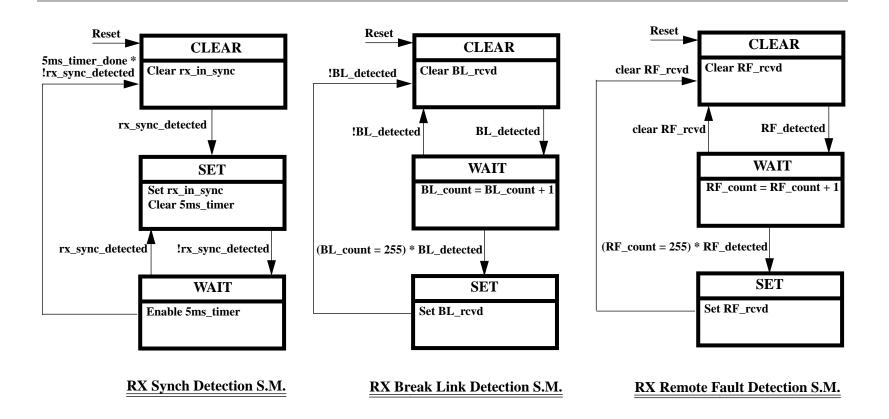
Break Link

- Low-level continuous signaling
 - K28.7 across all four lanes on XAUI
 - No alignment required
 - Mapped to a "reserved0" 64b/66b Control Frame for UniPHY
- Sent for the duration of ~10msec
 - During start up
 - When one end of the link loses synchronization
- Effect of receipt
 - Set the link status bit to "down"
 - Reset the link synchronization state machine and the de-skew logic

 IEEE 802.3ae	
10 Gigabit Ethernet	S. Muller - Sun


Concept (continued)

Remote Fault


- Low-level continuous signaling
 - K28.1 interleaved with normal (randomized) Idle across all four lanes on XAUI
 - No alignment required
 - K28.1 is mapped to a "reserved1" 64b/66b Control Frame for UniPHY
- Sent forever
 - Whenever the local receiver cannot achieve synchronization
- Effect of receipt:
 - Keep the link status bit as "down"
 - Set the Remote Fault status bit when local receiver is in synch and it continues receiving RF signals
 - Once set, the Remote Fault status bit is only cleared when link status is "up"

IEEE 802.3ae	
10 Gigabit Ethernet	S. Muller - Sun

Transmit Synchronization State Machine

Receive Detection State Machines

Notes:

* rx_sync_detected = signal_detect * pll_lock * lane0_in_sync * lane1_in_sync * lane2_in_sync * lane3_in_sync

* BL_detected = (lane0 = K28.7) * (lane1 = K28.7) * (lane2 = K28.7) * (lane3 = K28.7)

* RF_detected = (lane0 = K28.1) * (lane1 = K28.1) * (lane2 = K28.1) * (lane3 = K28.1)

What About OAM&P?

- There seems to be a wide consensus that OAM&P support in the WAN should be a mandatory function for 10 Gigabit Ethernet
- To date, it does not appear that the same level of consensus exists regarding the necessity of this function in LAN applications
- If 802.3ae decides to provide support for OAM&P in the LAN, such a solution should architecturally easily scale to higher speeds
 - LSS, as proposed, does not meet this requirement
 - Relies on the existence and a minimum duration of the IPG
 - What about 100 Gigabit Ethernet that uses 8-wavelength WDM?
- Potential solutions:
 - Use the WAN PHY in LAN applications
 - Frame-based approach
 - Very low overhead --- OAM&P information requires very little bandwidth
 - Can use high level management frames (SNMP)
 - Alternatively, a low level MAC frame can be defined (similar to 802.3x)

IEEE 802.3ae	
10 Gigabit Ethernet	S. Muller - Su

Summary

- The proposed solution for Link Break and Remote Fault functions accomplishes the desired goals using a mechanism which is:
 - Robust
 - Continuous signaling
 - No alignment required
 - Predictable behavior
 - Simple and cheap
 - One state machine
 - Two timers
 - Two counters
 - Scalable
 - Does not rely neither on the existence nor the duration of an IPG
 - Will work for all speeds (100-Gigabit Ethernet,....)
- Support for OAM&P in the LAN is unrelated to LB/RF and should be considered on its own merits
- We recommend that this proposal be adopted by 802.3ae as basis for further work for the 10-Gigabit Ethernet standard

 IEEE 802.3ae	
10 Gigabit Ethernet	S. Muller - Sun