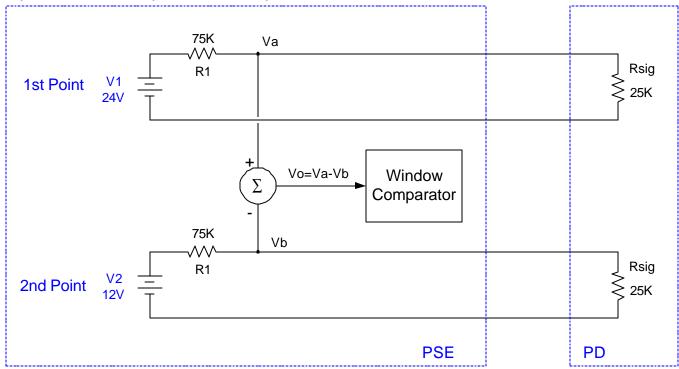
Tolerance Analysis of Resistive Discovery


Rick Brooks

ribrooks@nortelnetworks.com

IEEE802.3af Interim Meeting, January, 2001

Basic Two Point Resistive Discovery Process

- The Avaya protocol specifies a 2 point detection, where the two results are then subtracted
 - 1st point: 24V open circuit, 320 μA short circuit
 - 2nd point: 12V open circuit, 160 µA short circuit

— the min and max definitions are:

$$R1_{max} = 75K \cdot (1 + res_{tol})$$

$$V2_{max} = \frac{V1}{2} \cdot (1 + src_{rel_{tol}})$$

R1 min =
$$75K \cdot (1 - \text{res tol})$$

$$V2_{min} = \frac{V1}{2} \cdot (1 - src_{rel_{tol}})$$

$$V1_max = 24V \cdot (1 + src_tol)$$

$$Rsig_max = 26.5K$$

V1 min =
$$24V \cdot (1 - \text{src_tol})$$

$$Rsig_min = 19K$$

Basic Resistive Discovery Process

- determination of window comparator thresholds
 - the upper window comparator threshold is given by:

$$Vomax(a,b,c) := \left[\frac{(V1) \cdot (1 + a \cdot src_tol) - \left[\frac{V1 \cdot (1 + a \cdot src_tol)}{2} \right] \cdot (1 + c \cdot src_rel_tol)}{R1 \cdot (1 + b \cdot res_tol) + Rsigmax} \right]$$

— the lower window comparator threshold is given by:

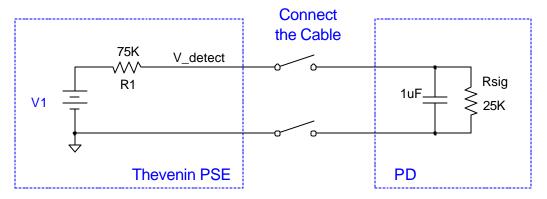
$$Vomin(a,b,c) := \left[Rsigmin \cdot \frac{(V1) \cdot (1 + a \cdot src_tol) - \left[\frac{V1 \cdot (1 + a \cdot src_tol)}{2} \right] \cdot (1 + c \cdot src_rel_tol)}{R1 \cdot (1 + b \cdot res_tol) + Rsigmin} \right]$$

- where a, b, and c each take on values of +1, or -1 during the worst case analysis
- tabulation of the results for various source and resistor tolerances

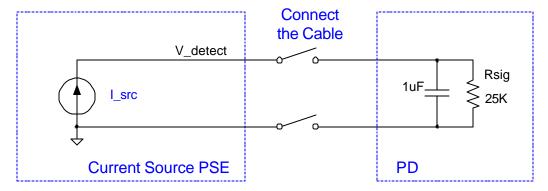
Table of Window Comparator Thresholds				
res_tol	src_tol	src_rel_tol	Upper Threshold	Lower Threshold
10%	10%	1%	3.758V	2.001V
5%	5%	1%	3.450V	2.194V
2%	2%	1%	3.276V	2.316V
1%	1%	1%	3.220V	2.358V

Basic Resistive Discovery Process

 Given the window comparator Thresholds that are now set, the following table shows the signature resistance that is guaranteed to be rejected (again using worst case analysis)


res_tol	src_tol	src_rel_tol	Always reject signatures below	Always reject signatures above
10%	10%	1%	11.923K ohm	44.722K ohm
5%	5%	1%	14.840K ohm	34.672K ohm
2%	2%	1%	16.946K ohm	29.956K ohm
1%	1%	1%	17.719K ohm	28.555K ohm

- Summary of the basic 2 point resistive discovery method:
- In order to meet the present version (12/18/2000) of the PSE, PD specs, the PSE will need to have tolerances that are less than 1%, since:
 - this analysis assumes a perfect window comparator, comparator thresholds, ADC, etc...
 - this analysis does not include the whole system implementation
 - this analysis does not include any timing or interference constraints
 - this analysis does not include capacitive loads
 - this analysis does not include the effects of noise

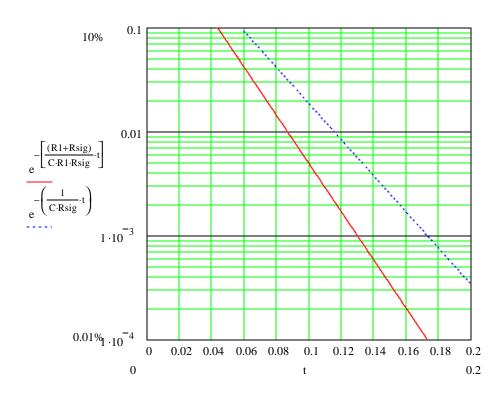


What About Capacitive Loads within the PD, or PSE?

• Thevenin (or Norton) PSE, 1 μF capacitive load

pure current source PSE, 1 μF capacitive load


Capacitive Load Settling Time for a single 12V step


detector voltage settling time:

error term settling time:

$$V_thev(t) \coloneqq \frac{-Rsig \cdot Vl}{((R1 + Rsig))} \cdot e^{-\left[\frac{(R1 + Rsig)}{C \cdot R1 \cdot Rsig} \cdot t\right]} + \frac{Rsig \cdot Vl}{((R1 + Rsig))}$$

$$V_cursrc(t) := Isrc \cdot Rsig \cdot \left(\frac{-t}{1 - e^{RsigC}}\right)$$

- Thevenin (Norton) source settles to within: 1% in 86.3 ms
- 0.1% in 129.5 ms

- pure current source settles to within:
- 1% in 115.1 ms
- 0.1% in 172.7 ms

Total Discovery Time and Tolerance Analysis Summary

- A Thevenin, or Norton PSE with the following:
 - 75K +/- 1% source resistor, zero output capacitance
 - 24V +/- 1% 1st source
 - 12V +/- 0.1% 2nd source
 - 0.1% settling time allowed due the possible capacitive load
- It will take 259ms to do a single 2 point "slope" discovery with no repetitions
- A pure current driven PSE would take 345ms to do a 2 point discovery with no repetitions
 - assuming 0.1% settling time is needed for discovery
- However, 350 ms is the maximum specified discovery time
- Tolerance Analysis Summary and Recommendations:
 - try to eliminate the need for 1% tolerances within the PSE
 - higher relative cost
 - eliminate the need to use a micro-controller with an accurate ADC for discovery
 - lower the signature resistance to speed up discovery time and allow for repeating the 2 point discovery process
 - readjust the signature tolerances so that the dead bands are larger relative to the valid signature window
 - have a means of auto-calibration within the PSE
 - shape the PSE voltage or current drive waveforms to speed up discovery time
 - lower the maximum allowed capacitive load by an order of magnitude, including PSE and PD
 - keep the nominal signature value centered within the tolerance bands

