
Slide 1
1

IEEE 802.3af  Sept.  2000

LINK PERFORMANCE
Terry Cobb



Slide 2
2

IEEE 802.3af  Sept.  2000

Introduction

• To ensure that legacy cabling will operate it is important

that link performance is not degraded with DTE power.

• A balanced and common mode terminated interface to the

cabling is important to maintain that link performance.
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Cable Models and Measurements

• “Issues in High Frequency Cable Models and Measurements”

Baxter, Conte, Shariff, ICT 1997, Vol 1 pp.37-41.   (attached)

• The experiment in the paper demonstrates the change in the

reflected conversion mode with common mode termination.

• The paper also talks about the importance of all transmission

characteristics and how to measure these accurately.

                Example - Reflected Modes :

       Differential ( !!!! Return Loss )

       Common

       Differential to Common

       Common to Differential
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Short Link Resonance

• TIA dealt with a problem that illustrated this:

“Short Link Resonance”

• An increase in NEXT due to unbalance in connectors on

a short link.

• NEXT displayed a significant change with common mode

termination.
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Short Link Resonance

Courtesy Jim Sciacero - Microtest



Slide 6
6

IEEE 802.3af  Sept.  2000

Conclusion

• To ensure that legacy cabling will operate:

 Balance and common mode termination are required.

• To verify link performance is not degraded:

 Test with and without the pairs in the power configuration.

 Tests should be in a typical wiring closet configuration.

 Tests should include at least crosstalk measurements.



Issues in High Frequency Cable
Models and Measurements

L.A. Baxter, R.A. Conte  and  M.A. Shariff

Bell Laboratories
Lucent Technologies
200 Laurel Avenue

Middletown, New Jersey 07748, U.S.A

Abstract: As the push for higher bandwidth and
higher data rates continues, the transmission modeling
and measurement techniques used to characterize
cabling systems need equal attention. This is
especially true if one is concerned with supporting the
emerging gigabit applications. This paper discusses
some of the limitations of existing models and the need
for a more complete description of transmission
phenomena in the frequency range of 100 MHz and
beyond. In particular, the interaction between common
mode and differential signals is not adequately
described by low frequency decoupled transmission
line models. The need for a more complete description
of the interaction of the various modes of propagation
naturally leads to the analysis of a coupled
multiconductor transmission line also known as modal
decomposition. This will allow us to extend and
redefine some of the currently used performance
metrics to more accurately predict high frequency link
behavior from a knowledge of component
characteristics.

1. Introduction

As twisted pair finds more applications in the high
frequency range of 100 MHz and beyond, there is a
strong need to predict link level behavior from a
knowledge of the performance of each individual
component comprising the link. This is especially true if
one is interested in supporting the high speed LANs
currently being developed by a variety of international
standards bodies. The well understood concepts of
attenuation, NEXT (near end crosstalk), FEXT (far end
crosstalk), and return loss must be augmented by a
description of the interaction of the various modes of
propagation supported by a cable at high frequencies.
This interaction is key to understanding Electro-
Magnetic Compatibility (EMC) performance. This means
a practical definition and measurement procedure for

balance at high frequencies must be defined. Balance is
well documented in the voice band but extending voice
band measurement techniques to high frequency has
proved completely impracticable where measurement
reproducibility is of prime importance. Thus a re-
examination of this problem is necessary.

2.  The Need for a Coupled Model

 When the first category 5 systems were introduced
there was a strong need to understand the
susceptibility of these links to external noise fields. The
following experiment was conducted to gain some
insight into noise pick up from the tightly twisted
category 5 data pairs. Figure 1 shows the experimental
setup.
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Figure 1: Laboratory Setup for Susceptibility Testing

An Electronic Fast Transient (EFT) clamp was used as a
common mode noise source to simultaneously excite all
conductors of the cable. Measurements were then made
on the differential noise observed at the near end of the
cable. The common mode termination at the far end of
the link (RL) was varied in an attempt to study its effect
on the observed differential noise. This resulted in some
very interesting data on wave scattering at terminations.
The total length of cable used was approximately 100
meters with the EFT clamp 1 to 2 meters from the end
where the differential noise was measured using a
digital scope. Only one pair of the cable was used as a
differential path, all other conductors were grounded at
both ends of the link creating a transmission line
consisting of 2 signal conductors and a ground path.
The transformers used at both ends of the link were
highly balanced laboratory quality magnetics. The EFT
clamp excites the line as a common mode source and
causes a signal VL to propagate in both directions away
from the source of the disturbance. One would therefore
expect to observe a noise spike at the scope soon after
the excitation of the EFT. Depending upon the
attenuation of the link and reflections at the far end, one



may or may not see the effect of the wave which was
initially launched toward the far end termination. The
first measurement was made with the far end common
mode termination RL open. The measured differential
noise pulse is shown in figure 2 and it was quite
surprising to find a large spike approximately 1 µ sec
after the initial excitation, especially as both ends of the
link were properly terminated differentially.

Figure 2: Response with Common Mode
Termination Open

 The next measurement was with RL shorted and is
shown in figure 3.

Figure 3: Response with Common Mode Termination
Shorted

Now the spike at 1 µ sec appears to be inverted but the
waveform prior to 1 µ sec is similar to that of the
previous figure. The last measurement was made with
RL = 50 Ω  and is shown in figure 4. The noise spike

at 1 µ sec is substantially reduced in amplitude from the

previous two measurements. By superimposing the
above three plots on the same axes (figure 5) it becomes
clear what is happening. All three measurements are in
excellent agreement up to the time of 1 µ sec, after that
they disagree completely. The measurement prior to 1 µ
sec results from the initial common mode wave
propagating toward the digital scope and is the same in
all three
cases.

Figure 4: Response with Common Mode Termination
RL = 50 Ω

Primarily we see the common mode to differential
conversion of the termination at the scope along with
the conversion from the short length of cable between
the EFT clamp and the scope. After 1 µ sec  the
reflected differential and common mode waves VD and
VL from the far end of the link arrive at the scope and are
different depending upon the scattering at the far end.

Figure 5: Superposition of All 3 Responses



 After 1 µ sec we see both the conversion of the near
end termination as well as the effects of scattering at the
other end of the link. The time of 1 µ sec is consistent
with the round trip delay of a wave traveling 200 meters
with a propagation velocity of 2/3 the speed of light,
which is a common propagation velocity found in
cables of the type being measured. It is clear that there
is a strong interaction and conversion between common
mode and differential waves propagating on the line and
scattering at terminations. Performance metrics for both
the line and terminations need to be developed which
reflect this interaction.

3.  The Multiconductor Line and Balanced
Transmission

 Many of the concepts associated with the analysis of
multiconductor line are simply extensions of those
arising from a two conductor line. Consider a line
consisting of n conductors and ground. Let V(x) and I(x)
define a vector of voltages and currents on each of the
conductors at a distance x from the origin. Let Y(x)
denote a matrix of shunt admittances between the
conductors and Z(x) denote a matrix of series
impedances, then the defining equations become

dV x
dx

Z x I x
( )

( ) ( )= −                 (3.1)

d I x
dx

Y x V x
( )

( ) ( )= −                 (3.2)

which are vector extensions of the traditional 1
dimensional line. This system can be readily solved as a
coupled first order differential equation
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This yields the system transfer function T(x) relating
voltages and currents at the origin to voltages and
currents at some other point on the line. We will denote
A(x) to be the coefficient matrix on the right hand side
of equation 3.3. When the line is uniform and
homogeneous T(x) is easily seen to be the exponential
of A. Then under fairly general conditions the solution
of equation 3.3 will be a linear combination of
eigenvectors of A (denoted by mi) weighted by

exponentials of the form e iλ  where λ i is the

eigenvalue corresponding to mi. This is easily verified
by direct substitution. The vectors mi are called the
modes of the system and also have the extremely useful
property that they are eigenvectors of  T(x) with

corresponding eigenvalues e iλ  i.e.,

T x m e mi
x

i
i( ) = λ                   (3.4)

Thus if one excites the line with a combination of
voltages and currents as defined by a given mode, the
output from the line will be a scaled replica of the input.
A mode can be thought of as an input voltage and
current vector which propagates through the line and
appears at the output in a form which is directly
proportional to the input. The propagation constant for
a particular mode is given by λ i  which may be different

for distinct modes. Also since the eigenvectors
associated with distinct eigenvalues will be
independent, under fairly general conditions the
collection of distinct modes will span the space of all
possible combinations of voltages and currents within
the cable. In other words every possible voltage/current
state in the cable can be uniquely decomposed into a
linear combination of modes. This suggests a natural
transmission scheme for sending signals through a
cable containing n distinct modes. We simply map the ith

signal into the ith mode of propagation for the cable and
separate out the distinct modes at the output to recover
the original signals.

eλ jxmode j
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Figure 6: Generalization of Balanced Transmission

Separation is possible due to the independence of the
modes. The advantage of this scheme is that since there
is no coupling between the modes during propagation
(equation  3.4) there will be no NEXT (near end
crosstalk) nor any FEXT (far end crosstalk). Such a
‘mode mapping' scheme is shown in figure 6. This
concept will allow us to generalize cable balance and
define a component metric which directly relates to
system level performance. We consider a cable with n



pairs and 2n conductors plus ground. The voltage on
the conductors of pair i are placed in (2i-1)th and 2ith

position and the currents in locations 2n+2i-1 and 2n+2i.
We can define a cable to be balanced if and only if its
transfer function T(x) has n eigenvectors of the form
shown in figure 7. Here ‘a’ is a constant relating voltage
to current for this particular mode. With this definition
of cable balance the mode mapping device of figure 6
can be called a generalized balun. The reason for using
a transformer or balun with transmission systems is to
map the transmitted signal into one of the differential
mode eigenvectors of the cable connecting the
transmitter and receiver. Twisting the pairs in a multipair
cable effectively forces the eigenvectors to take the
form of figure 7. In practice
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Figure 7: State Vector for Balanced Transmission

the degree to which the 0 entries of figure 7  actually
differ from 0 is a direct measure of the imbalance of the
cable.

Now consider the situation where a perfectly balanced
signal is applied to exactly one pair of an unbalanced
cable. Since the cable does not have a true differential
mode for this pair, this signal must actually excite
several different modes of propagation to meet the
boundary conditions. Each mode may propagate with a

different propagation constant and scatter differently at
both ends of the cable due to the boundary conditions
presented by the impedances of the signal source and
load terminations. The net result is that every conductor
of the cable may have a non zero voltage and current.
These unintended signals represent both NEXT and
FEXT for the cable in question. Furthermore, it is likely
that each individual conductor may have a different
amount of noise indicating that a perfectly balanced
signal has generated both differential and common
mode noise on each pair of the cable. A similar situation
occurs when an unbalanced signal is applied to a
perfectly balanced cable. It is this modal misalignment
between the applied signal and the modes of the cable
which generate both differential and common mode
noise. When the applied signal excites more than one
mode of propagation, NEXT and FEXT results.
 4.  Reflection Coefficient and Balanced
Loads

  At the boundaries of a multiconductor line, it is
possible that an incident mode is reflected or scattered
into many different modes by the terminating
impedances in either the source or load. To analyze this
situation we must note that the general solution to
equation 3.3 consists of a voltage/current wave
traveling in the positive x direction and another such
wave traveling in the negative x direction [1]. We will
denote these waves by V+, I+, V- , I- and the total voltage
and current by V and I respectively. It can also be
shown [1] that the relation between the voltage and
current waves traveling in the same direction is given
by the characteristic impedance matrix Z0. Thus

V V V= ++ −                           (4.1)

I I I= −+ −                            (4.2)

V Z I+ += 0                             (4.3)

V Z I− −= 0                             (4.4)

The load termination ZL forces the condition

V Z IL=                              (4.5)

The combination of equations 4.1 - 4.5 yield a multitude
of relationships only one of which will be presented
here. Namely,

( )( )V Z Z Z Z VL L−
−

+= − +0 0
1



or

( )( )ρV L LZ Z Z Z= − +
−

0 0
1

where ρV  is defined as the voltage reflection

coefficient matrix. This is a natural extension of the one
dimensional concept to many dimensions. If we use a
coordinate system in which the ith mode mi is denoted
by a vector with a 1 in the ith position and zeros
elsewhere, and transform ρV  into this coordinate

system we have the off diagonal elements describe the
scattering of mode i into mode j when the wave defined
by mode i strikes the termination. This could be a
conversion from differential to common mode or
common mode to differential depending upon the
particular modes supported by the cable. We can now
define a termination to be balanced if and only if the
reflection coefficient matrix associated with pure
differential and pure common mode modes of
propagation is diagonal. Otherwise we have
conversions between the various modes at the
termination. This conversion process is clearly
demonstrated in figures 2 through 5.

5.  Impact on Measurements

  In the past, a description of cable transmission in terms
of differential quantities has been adequate, and most
cable measurements focused exclusively on differential
parameters. It is now known that conversions from
differential to common mode and common mode to
differential can not be neglected if one is to obtain a
complete description of transmission at high
frequencies. This implies that measurement techniques
need to be developed to carefully examine these
conversions. In fact, the quantities to be measured are
exactly those described in the preceding paragraphs.
For terminations one needs to quantify the voltage
reflection coefficient matrix, and for cables one needs
propagation constants (eigenvalues) and a description
of the actual modes (eigenvectors). Some attempts have
been made to address this need using baluns to
measure conversions from differential to common mode
and the reverse. These attempts have met with limited
success for a number of reasons. One of the most
severe is that the balance of the magnetics has always
been comparable with the balance of the quantities
being measured. The measured data has inherently been
corrupted by the measurement process. It has been
extremely difficult to manufacture wide band magnetics

with balance an order of magnitude better than category
5 components and at this point in time this has not yet
been achieved by balun manufacturers. Secondly, the
normalizations which have been proposed to  calibrate
out balun characteristics have been somewhat arbitrary
and resulted in a fair degree of uncertainty. These
normalizations are not really suited for precise
measurements. These problems can be overcome by
measuring the unbalanced parameters associated with a
multiport network of the device in question and then
performing precise computations to extract differential
and common mode parameters. Such data acquisition
requires a multiport network analyzer with an extremely
stable switching network. This measurement process is
commonly referred to as modal decomposition [2] and is
actively being developed and refined by a number of
companies in the cabling industry.

6.  Conclusion

  The need to describe the interaction between the
various modes of propagation in a multipair cable
naturally leads to the study and analysis of a
multiconductor line. It has been shown that it is
possible to define cable balance and termination
balance in such a way that these component metrics
directly relate to system level performance. In fact, if
one computes the transfer function for a terminated line
or cascaded lines, the mathematical expressions would
involve eigenvalues, eigenvectors, and reflection
coefficients as they have been described here. Link
level performance is built upon these component
concepts. It is also clear that a wealth of information can
be obtained if one has access to matrix data describing
the transfer function T(x) and the reflection coefficient
matrix or some equivalent quantities. Modal
decomposition hold the promise of being able to
achieve this. Once this process is perfected it will be
possible to obtain a detailed description on coupled
transmission in multipair cables.
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