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CRC and Scrambling

- in which order?

- what type of scrambling? 
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Composition of PHY frame: Composition of PHY frame: CRC, then cipherCRC, then cipher--stream scramblingstream scrambling
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Synch bit and cipherSynch bit and cipher--stream scramblingstream scrambling
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• Synch MLSR generates one synch bit per PHY frame and  
transitions to new n-bit state. The synch bit is inserted into the 
PHY frame. 

• Scram MLSR is initialized with n-bit state of Synch MLSR and 
generates a segment of the Scram MLSR sequence for cipher-
stream scrambling.

• By proper design, the segments of the Scram MLSR sequence 
start at pseudo-random locations.
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Synch MLSR and Scram MLSR generatorsSynch MLSR and Scram MLSR generators
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Receiver PCS functions:Receiver PCS functions: ciphercipher--stream descrambling, then CRCstream descrambling, then CRC--7 checking7 checking

1024 noisy 16-PAM signals = 512 noisy 128-DSQ signals 

3*512 unc. bits + 1723 cod. bits = 1 syn. bit +1 aux. ch. bit + 50*65 data bits + CRC-7 bits 

Cipher-stream descrambling

 50*65 data bits + CRC-7 bits 

CRC-7 checking
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Receiver PCS functions:Receiver PCS functions: CRCCRC--8 checking, then self8 checking, then self--synch descramblingsynch descrambling

1024 noisy 16-PAM signals = 512 noisy 128-DSQ signals 

3*512 unc. bits + 1723 cod. bits = 1 aux. ch. bit + 50*65 data bits + CRC-8 bits 

Self-syn. descrambling (1+x39+x58)

1 aux. ch. bit + 50*65 data bits 

CRC-8 checking

 50*65 data bits 

Deaggregation of 65-bit blocks

65 to 2*(4+32) transcoding 

XGMII

RXC<3:0> 
RXD<31:0>)

RXC<3:0> 
RXD<31:0>)

RXC<3:0> 
RXD<31:0>)
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or

Force current 50*8 
octets and first 8 

octets of next 
PHY frame* to 
Error: RXC=1  
RXD=0xFE

CRC-8 error
Invalid 
LDPC
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Metric calculation and LDPC decoding Subset decoding 

 Aux. 
ch. bit
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* because of error 
propagation in self-
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CRC and scrambling: conclusionsCRC and scrambling: conclusions

Option 1: (in transmitter) First CRC, then cipher-stream scrambling

☺ When PHY frame error is detected in receiver, at XGMII all
octets of current PHY frame must be replaced by ERROR 
octets

Requires (?) one synch bit in PHY frame → 7 bits available for 
CRC.

Option 2: (in transmitter) First self-synch scrambling, then CRC

☺ No synch bit required → 8 bits available for CRC

When PHY frame error is detected in receiver, at XGMII all
octets of current PHY frame and a few octets at beginning of 
next PHY frame must be replaced by ERROR octets.

(?) Cipher stream synchronization may be realized without synch bit by relying on 
PHY frame counting after start-up and/or signaling in auxiliary channel.

Differences in complexity are negligible.
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Precoding

- analytic relations

- fixed transmit and receive filters

- set of IIR precoders

- SNR vs cable length for Cable Model #2
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Optimum precoding response and decisionOptimum precoding response and decision--point SNRpoint SNR
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TX frontTX front--end filtering and PSD  end filtering and PSD  SSTT(f(f))
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RX frontRX front--end filteringend filtering
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THP filters designed for variable-length cable model #3 (Ungerboeck_1_0704, Portland)
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IIR precoding responses IIR precoding responses hhIIRIIR(D(D))

Decision-point SNR vs cable length shown for variable-length 
Cable Model #3 in ungerboeck_1_1104 (San Antonio). In the 
sequel we consider Cable Model #2. 



14 IEEE P802.3an Nov 2004 Plenary

Cable and PSCable and PS--ANEXT transfer functions: Cable Model #2ANEXT transfer functions: Cable Model #2
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SNR vs. cable lengthSNR vs. cable length
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SNR vs. cable lengthSNR vs. cable length

Cable length l  [m]
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SNR vs. cable lengthSNR vs. cable length
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Fixed Fixed hhFIRFIR(D(D) ) 

.c.w,"3BWF"RF and m 55for   optimized (D)h dFIR =τ==l

Variable-length Cable Model #2; fT = 800 Mbaud; TF = “sinx/xf0f1”;
PT = 5 dBm; AWGN=-140 dBm/Hz; ANEXT (PT=5dB,ℓ= 55m)
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Fixed Fixed hhIIRIIR(D(D) ) 
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Precoding: conclusionsPrecoding: conclusions

• There exists sufficient evidence that a small number (4 - 8) of 
fixed precoding responses suffices to achieve near optimum 
performance for all cable types and lengths relevant for 
10GBASE-T. 

• Coarse approximations of FIR precoding responses by IIR 
response (as done by this author) have lead to significant 
decision-point SNR losses.

• Approximation of known good FIR responses by IIR responses 
with low degrees of the numerator and denominator polynomials 
requires further study.
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Backup slide
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VariableVariable--length 10GBASElength 10GBASE--T cable models T cable models (ungerboeck_1_0704.pdf)(ungerboeck_1_0704.pdf)
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Model #1 (Cat 7, shielded) , 100 m → cabtyp “ClassF” : Rs=9.48 Ω/m,  Rd=1.7 mΩ/m, X1=60 dB

Model #2 (Cat 6, unshielded) , 55 m → cabtyp “ClassEu” : Rs=9.85 Ω/m,  Rd=3.5 mΩ/m, X1=47 dB

Model #3 (Cat 6, shielded) , 100 m → cabtyp “ClassEs” : Rs=9.85 Ω/m,  Rd=3.5 mΩ/m, X1=62 dB

skin effect

dielectric loss
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