

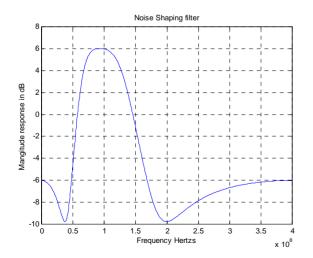
Making personal broadband a reality[™]

Drawbacks of Fixed THP Coefficients

IEEE 802.3an Task Force Vancouver January 2005 Dr. Pedro Reviriego Dr. Albert Molina

- Fixed THP coefficients will be optimum only for a given configuration (channel, AFE, digital receiver)
- For what configuration do we want to optimize?
- What is the price when for those THP coefficients we use a different configuration?
- This presentation gives some examples of performance loss due to the non-optimality of a precoder.

An Example

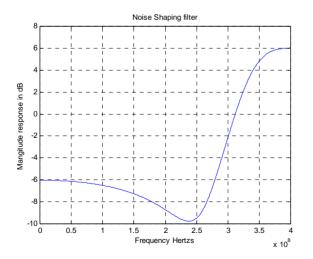

- First, we optimize the THP coefficients of a 12 Tap FIR for the channel described in vareljian_1_1104.pdf (slide 4). We then derive the FFE as per slide 3 in the same presentation.
- Second, for the same channel we implement zero excess bandwidth as per in powell_1_0904.pdf (slide 16) and derive the optimal THP coefficients.
- The performance loss of 2 vs 1 is shown below.
- So if we decide to choose the THP coefficients that allow phase insensitive sampling we get loss even if we do not need phase insensitive sampling in our implementation.

FFE Length	Loss in SNR
32	0.87 dB
64	0.70 dB
128	0.48 dB

agere^{systems}

Another Example

- For the same configuration as in the previous slide (without phase insensitive sampling) we now filter the AWGN with the shaping filter shown below.
- We compare the results that we obtain with the precoder optimized for the AWGN only and a precoder optimized for the colored noise. This is what we get:

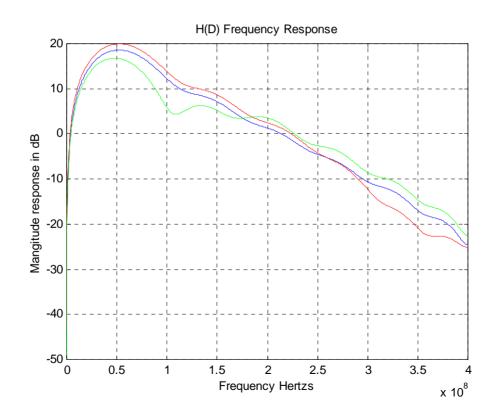


FFE Length	Loss in SNR
32	1.40 dB
64	2.29 dB
128	2.27 dB

agere

Another Example

- For the same configuration as in the previous slide (without phase insensitive sampling) we now filter the AWGN with the shaping filter shown below.
- We compare the results that we obtain with the precoder optimized for the AWGN only and a precoder optimized for the colored noise. This is what we get:



FFE Length	Loss in SNR
32	1.29 dB
64	1.63 dB
128	1.68 dB

agere

Precoder Responses

 The desired response H(D) for the examples are shown below in blue for AWGN, red for HP noise and green for BP noise.

ageressystems

Things that may change

- Real systems may prove different from the models used to derive THP (for example noise coloring or narrowband noise).
- Channel Response (different amounts of Alien Crosstalk, SRL, impedance mismatches, transformer, board layout, etc).
- Alternative Receiver Architectures
 - Oversampling.
 - Analog Equalization.
 - ADC implementation.
 - FFE length.

Conclusion

- We think that the standard should include a flexible mechanism by which the receiver can program the THP coefficients.
- For example, the receiver can send sets of coefficients to the transmitter until one is found that meets the performance requirements. These coefficients can either be stored in a LUT in the receiver or calculated dynamically.
- This is not incompatible with having a LUT in the transmitter, however if the above mechanism is implemented there appears to be no need for this.