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I. Introduction I. Introduction 

• LDPC codes were discovered by Gallager in 1962 and rediscovered 
in late 1990's. These codes form another class of Shannon limit 
approaching codes, besides turbo codes. 

• Well designed LDPC codes perform amazingly well and close to the
Shannon limit with iterative decoding using the sum-product-
algorithm (SPA). Long LDPC codes have been constructed and they 
perform only a few tenths (or hundredths) of a dB from the Shannon 
limit. 

• LDPC codes have some advantages over the turbo codes and have a 
great potential for error control in digital communication and storage 
systems. 
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Definitions and Basic Concepts 

• A binary LDPC code C is given by the null space of a sparse matrix 
H, called the parity-check matrix. If H has constant column weight  
and constant row weight     , it is said to be           -regular and the 
code C generated by it is called a           -regular LDPC code. 
Otherwise, H is said to be irregular and C is called an irregular LDPC 
code. 

• Suppose that H satisfies the constraint that no two rows (or two 
columns) have more than one 1-component in common. This 
constraint is called the row-column (RC)-constraint. The RC-
constraint on H ensures that the Tanner graph of the parity-check 
matrix is free of cycles of length 4 and hence has a girth of at least 6. 
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Definitions and Basic Concepts 

• The null space of a sparse parity-check matrix H that satisfies the RC-
constraint gives an LDPC code whose Tanner graph has a girth of at 
least 6. The girth of the Tanner graph of an LDPC code is simply
called the girth of the code.

• Let be the minimum column weight of H. If H satisfies RC-
constraint, the LDPC code generated by H has a minimum distance of 
at least  . 

minγ

min 1γ +
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Classifications of Construction of LDPC 

Codes

• Constructions of LDPC codes can be classified into two general 
categories: random and algebraic constructions. 

• Random construction is to construct codes using computer search 
based on a set of design rules (or guidelines) and required structures 
of their Tanner graphs, such as the degree distributions of the variable 
and check nodes. Random LDPC codes in general do not have 
sufficient structures to allow simple encoding. However, they do
perform well in the waterfall region. 
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Classifications of Construction of LDPC 

Codes

• Algebraic construction is to construct structured LDPC with algebraic 
and combinatorial methods. Structured LDPC codes in general have
encoding (or decoding) advantage over the random codes in terms of 
hardware implementation. 

• Well designed structured codes can perform just as well as random 
codes in terms of bit-error performance, frame-error performance and 
error floor, collectively. 
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Cyclic and Quasi-Cyclic LDPC Codes 

• If a sparse matrix H consists of a single circulant or a column of 
circulants, then the null space of H gives a cyclic LDPC code. Then 
the code is uniquely specified by a generator polynomial and its
encoding can be implemented with a simple feedback shift-register. 

• If a sparse matrix H consists of an array of circulants of the same size, 
then the null space of H gives a QC-LDPC code whose encoding can 
also be encoded with simple shift-registers. 

• Cyclic and QC-LDPC codes have encoding advantage over all the 
other types of LDPC codes. 
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Performance of LDPC Codes with Iterative 
Decoding 

• The error performance of an LDPC codes with iterative decoding 
using the SPA depends on a number of code structures. 

• The most important structures are: girth, cycle distributions, cycle 
structure of the code graph and the minimum distance of the code. 

• How does the error performance of an LDPC code depend on these 
structural properties, collectively, is basically unknown. 

• In many applications in communication and digital storage systems, a 
major concern is the error-floor. It is desired to design (or construct) 
LDPC codes either with no error-floor or a very low error-floor. 
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Performance of LDPC Codes with Iterative 
Decoding (Cont’d)

• Based on our many experimental results, the error floor very much 
depends on the column weight of the parity-check matrix. The error 
floor can be pushed down by increasing the column weight. However, 
as the error floor being pushed down by increasing the column weight, 
the waterfall performance of the code is pushed away from the 
Shannon limit. Figure 1 displays this phenomenon. For given code
length and rate, a proper choice of the column weight is needed to 
achieve a low error-floor while maintain a close to Shannon limit 
waterfall performance. 
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Figure 1.   error performance of the 3 irregular LDPC(4032,3264) codes
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II. Major Algebraic and Combinatorial MethodsII. Major Algebraic and Combinatorial Methods
------ Construction based on finite geometries

• Y. Kou, S. Lin, and M. Fossorier," Low-density parity-check codes based 
on finite geometries: a rediscovery and new results," IEEE Trans. on 
Inform. Theory, vol.47, no.7, pp. 2711-2736, Nov. 2001. 

• H. Tang, J. Xu, Y. Kou, S. Lin, and K. Abdel-Ghaffar,"On algebraic 
construction of Gallager and circulant low-density parity-check codes," 
IEEE Trans. on Inform. Theory, vol. 50, no. 6, pp. 1269-1279, June 2004 

• H. Tang, J. Xu, S. Lin, K. Abdel-Ghaffar,"Codes on finite geometries," 
accepted for publication in IEEE Trans. on Inform. Theory, 2004. 

• J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar,"Construction 
of regular and irregular LDPC codes: geometry decomposition and 
masking," submitted to IEEE Trans. on Inform. Theory, 2004. 
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Construction based on combinatorial designs 

• B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin"Construction of low-
density parity-check codes based on balanced incomplete block designs," 
IEEE Trans. Inform. Theory, vol. 50, no.6, pp. 1157-1268, June 2004. 

• B. Vasic and O. Milenkovic,"Combinatorial construction of low-density 
parity-check codes for iterative decoding," IEEE Trans. on Inform. 
Theory, vol. 50, no. 6, pp. 1156-1176, June 2004. 
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Construction based on Reed-Solomon (RS) codes 

• I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin,"Construction of low-
density parity-check codes based on Reed-Solomon codes with two 
information symbols," IEEE Communications Letters, vol. 7, no. 7, pp. 
317-319, July 2003. 

• L. Chen, I. Djurdjevic, J. Xu, S. Lin, and K. Abdel-Ghaffar,"Construction 
of quasi-cyclic LDPC codes based on the minimum weight codewords of 
Reed-Solomon Codes," Proc. 2004 IEEE Int. Symp. Inform. Theory, p. 
239, Chicago, IL, June 27-July 2, 2004. 
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Construction Based on Circulant Decomposition 

• L. Chen, J. Xu, I. Djurdjevic, and S. Lin,"Near Shannon limit quasi-cyclic 
low-density parity-check codes," IEEE Trans. Communications, vol. 52, 
no. 7, July 2004. 

• S. Lin, L. Chen, I. Djurdjevic, J. Xu,"Near Shannon limit quasi-cyclic 
low-density parity-check codes," Proc. IEEE GlobeCom"2003, pp. 2030-
2035, San Francisco, CA, Dec. 2003. 
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Construction based on Superposition 

• S. Lin, J. Xu, I. Djurdjevic, and H. Tang,"Hubrid construction of LDPC 
codes," Proc. 40th Annual Allerton Conf. on Commu. Control, and 
Computing, pp. 1149-1158, Monticello, IL, October 2-4, 2002. 

• J. Xu, L. Chen, I. Djurdjevic, L. -Q. Zeng,"Construction of low-density 
parity-check codes by superposition," accepted for publication in IEEE
Trnas. Commun., 2004. 
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Construction Based on Graphs 

• J. Rosenthal and P. O. Vontobel," Construction of LDPC codes using
Ramanujan graphs and ideas from Margulis," Proc. the 38th Allerton
Conf. on Commun., Control and Computing,  pp. 248-257, Monticello, IL, 
Oct. 4-6, 2001. 
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III. Construction of Structured LDPC Codes Based III. Construction of Structured LDPC Codes Based 
on RS Codes With Two Information Symbols on RS Codes With Two Information Symbols 

• Consider the Galois field GF(q) where q is a power of prime p, i.e.,    . 
Let      be a primitive element in GF(q). Then 

give all the q elements of GF(q). 

• For    , represent by a unit q-tuple over GF(2), 

, 

whose components correspond to the q elements of GF(q), where 
and all the other components are equal to 0. This unit q-tuple is called the 
location vector of . It is clear that the 1-components of the location 
vectors of two elements in GF(q) are at two different locations. 

mq p=

α
- 0 ( -2)0 ,  1= ,  ,  . . . ,   qα α α α∞=

- -1i q∞ ≤ < iα

- 0 -2( ) ( ,  ,  . . . ,  )i
qz z zα ∞=z

1 iz =

iα
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III. Construction of Structured LDPC Codes Based on III. Construction of Structured LDPC Codes Based on 
RS Codes With Two Information Symbols (ContRS Codes With Two Information Symbols (Cont’’d) d) 

• Form a square matrix A over GF(2) with the location vectors of the q
elements of GF(q) as the rows. Then A is a permutation matrix with 
column and row weights equal to 1. 

• Consider a (q, 2, q-1) RS code Cb over GF(q) obtained by adding an 
overall parity-check symbol to each codeword of the (q-1, 2, q-2) cyclic 
RS code. Cb has q2 codewords, one codeword with weight 0, q(q-1) 
codewords with minimum weight q-1, and q-1 codewords with weight q. 
Two codewords differ in at least q-1 positions, in other words, they have 
at most one position with the same code symbol. 

q q×
q q×
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III. Construction of Structured LDPC Codes Based on III. Construction of Structured LDPC Codes Based on 
RS Codes With Two Information Symbols (ContRS Codes With Two Information Symbols (Cont’’d) d) 

• Let C1 be the (q, 1, q) linear subcode of Cb. Partition Cb into q cosets with 
respect to C1. Denote these cosets with C1, C2, . . . , Cq, each consisting of 
q codewords. Two codewords in the same coset Ci differ at every position.

• For              , form a matrix Gi over GF(q) with the codewords in Ci 

as rows.

Any two rows of Gi differ at every position. The q components of each 
column are all different and they form all the q elements of GF(q).   

1 i q≤ ≤ q q×

1, 1,0 1, 2

2, 2,0 2, 2

, ,0 , 2

       (1)

q

q
i

q q q q

v v v
v v v

v v v

∞ −

∞ −

∞ −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

G

L
L
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III. Construction of Structured LDPC Codes Based on III. Construction of Structured LDPC Codes Based on 
RS Codes With Two Information Symbols (ContRS Codes With Two Information Symbols (Cont’’d) d) 

• Replacing each entry of Gi by its location vector, we obtain a           
matrix Bi over GF(2) which consists of q submatrices, 

where each submatrix Ai,j is a permutation matrix. 

• Form a          array of           permutation matrices as follows: 

2q q×

, ,0 , -2  ,i i i i q∞⎡ ⎤= ⎣ ⎦B A A AK

q q×

q q× q q×

1 1, 1,0 1, 2

2 2, 2,0 2, 2

q , ,0 , 2

=      (2)

q

q

q q q q

∞ −

∞ −

∞ −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

B A A A
B A A A

H
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III. Construction of Structured LDPC Codes Based on III. Construction of Structured LDPC Codes Based on 
RS Codes With Two Information Symbols (ContRS Codes With Two Information Symbols (Cont’’d) d) 

• H is a matrix over GF(2) with both column and row weights q. 
Since the rows of H correspond to the codewords in the RS code Cb, no 
two rows have more than one 1-component in common, which also 
implies that no two columns of H have more than one 1-component in 
common. Therefore, H satisfies the RC-constraint and hence its Tanner 
graph has a girth of at least 6. 

• For                     , let              be a subarray of H. is a 
regular matrix with column and row weights and and satisfies the 
RC-constraint. The null space of gives a regular LDPC code Crs

of length              with rate at least               and girth at least 6. 

• The minimum distance of Crs is at least +1 for odd and    +2 for even   . 

2 2q q×

1 ,  qγ ρ≤ ≤ ( , ) γ ρH γ ρ× ( , ) γ ρH q qγ ρ×
γ ρ

( , ) γ ρH
 n qρ= ( - )/ρ γ γ

γ γ γ γ



22

III. Construction of Structured LDPC Codes Based on III. Construction of Structured LDPC Codes Based on 
RS Codes With Two Information Symbols (ContRS Codes With Two Information Symbols (Cont’’d) d) 

• The above construction gives a family of structured regular LDPC codes 
with various lengths, rates and minimum distances. The girths of the 
codes in this family are at least 6. We call the codes in this family, RS-
based LDPC codes. 
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Example I

• Suppose we choose the extended (32,2,31) RS code over GF(25) for code 
construction. Based on this code, we can construct a 32x32 array of 
32x32 permutation matrices

• Set   =10 and    =32. Let H(10,32) be the 10x32 subarray that consists of 
the first 10 rows of permutation matrices of H. H(10,32) is a 320x1024 
matrix over GF(2) with column and row weights 10 and 32, respectively. 
The null space of H(10,32) gives a (1024,833) LDPC code with rate 
0.8134 and minimum distance at least 12. 

1, 1,0 1,30

2, 2,0 2,30

32, 32,0 32,30

∞

∞

∞

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A A A
A A A

H

A A A

L
L

M M L M
L

γ ρ
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Example I

• Assume BPSK transmission over an AWGN channel with iterative 
decoding using the SPA. Set the maximum number decoding iterations to 
100. The performance of the code is shown in Figure 1. At the BER of 
10-6, it achieves more than 6 dB coding gain over the uncoded BPSK and 
performs only 1.9 dB from the Shannon limit. The decoding converges 
very fast. At the BER of 10-6, the performance gap between 5 and 100 
iterations is within 0.4 dB. 
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Figure 2.
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Example II

• Again we use the extended (32,2,31) RS code over GF(25) for code 
construction. Set    =   =32. Then H(32,32) is the entire array of H given 
in Example I. H(32,32) is a 1024x1024 matrix over GF(2) with both 
column and row weights 32. The null space of H(32,32) gives a 
(1024,781) LDPC code with rate 0.7626 with minimum distance exactly 
34 (a large minimum distance for an LDPC code of length 1024). The 
performance of this code is shown in Figure 2. At the BER of 10-6, it 
achieves almost 7 dB coding gain over the uncoded BPSK and performs 
only 1.9 dB from the Shannon limit. For such a short LDPC code, the 
code performs very well. Since it has large minimum distance, it is not 
expected to have an error floor. 

γ ρ
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• Table 1 gives a list LDPC codes of length 1024 constructed based on the 
(32,2,31) extended RS code over GF(25). 

Table 1 LDPC codes of length 1024 constructed based on the (32,31) 
extended RS code 

Codes Rates Minimum 
Distantce

(1024,845) 0.8252 8 10
(1024,833) 0.8134 10 12
(1024,821) 0.8017 12 14
(1024,809) 0.7900 14 16
(1024,797) 0.7783 16 18
(1024,793) 0.7744 20 22
(1024,783) 0.7646 30 32
(1024,781) 0.7626 32 34

γ

≥
≥

≥

≥
≥

≥
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IV. Construction of QCIV. Construction of QC--LDPC Codes Based on the Minimum LDPC Codes Based on the Minimum 
WeightWeight CodewordsCodewords of RS Codes with Two Information Symbols of RS Codes with Two Information Symbols 

• For constructing QC-LDPC codes, we need to redefine the location 
vectors of elements of a finite field. Again we consider the elements              

.  For                , the location vector of an 
nonzero element of GF(q) is a (q-1)-tuple, 

where zi=1 and all the other components are equal to zero. The location 
vector for the 0 element of GF(q) is represented by the all zero (q-1)-tuple, 
(0 0 . . . 0). 

0 q-20= , 1= , , . . . , α α α α∞ 0 -1i q≤ <
iα

i
0 1 -2( ) ( ,  , ,  ),  qz z zα =z K
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IV. Construction of QCIV. Construction of QC--LDPC Codes Based on the Minimum WeightLDPC Codes Based on the Minimum Weight
CodewordsCodewords of RS Codes with Two Information Symbols (Contof RS Codes with Two Information Symbols (Cont’’d)d)

• Consider the (q,2,q-1) extended cyclic RS code Cb. Each minimum 
weight (m-w) codeword has one and only one 0-component. For i=      , 

0, 1, . . . , q-2,  let be a m-w codeword with 
the ith component vi,i=0. Let                                               be the set of q-1 
m-w codewords of Cb with the ith components equal to 0. 

• The m-w codewords of Cb can be partitioned into q sets,        ,       , 
U1, . . . , Uq-2, each consisting of q-1 m-w codewords. These sets are 
called uniform classes of m-w codewords of Cb. Two m-w codewords in 
the same uniform class Ui differ in all the q-1 nonzero positions. Two m-
w codewords from two different classes differ in at least q-1 positions. 

−∞

, ,0 ,1 , -2( ,  ,  ,   ,  ) i i i i i qv v v v∞=v K
-2U { ,  ,   ,  } q

i i i iα α= v v vK

U∞ 0U
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IV. Construction of QCIV. Construction of QC--LDPC Codes Based on the Minimum WeightLDPC Codes Based on the Minimum Weight
CodewordsCodewords of RS Codes with Two Information Symbols (Contof RS Codes with Two Information Symbols (Cont’’d)d)

• For the ith uniform class Ui of m-w codewords, form a             matrix Gi

over GF(q) with the q-1 m-w codewords in Ui as rows. For         , the q-1 
entries of the jth column of Gi are nonzero and they form the q-1 nonzero 
elements of GF(q), and the q-1 entries of ith column of Gi are all zero. 

• Replacing the entries of Gi by their location vectors, we obtain a      
matrix Bi which consists of a row of q

submatrices, 

where Ai,i is a zero matrix and all the other submatrices 
Ai,js are circulant permutation matrices. 

( -1)q q×
j i≠

( -1) ( -1) q q q× ( -1) ( -1)q q×

, ,0 , 2  ,  i i i i q∞ −⎡ ⎤= ⎣ ⎦B A A AK

( -1) ( -1)q q×
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IV. Construction of QCIV. Construction of QC--LDPC Codes Based on the Minimum WeightLDPC Codes Based on the Minimum Weight
CodewordsCodewords of RS Codes with Two Information Symbols (Contof RS Codes with Two Information Symbols (Cont’’d)d)

• Form the following          array of circulant permutation and 
zero matrices: 

where the submatrices on the main diagonal are zero matrices and all the 
other submatrices are circulant permutation matrices. Hqc,1 is a             

matrix over GF(2) with both column and row weights 
q-1. It satisfies the RC-constraint and hence its Tanner graph has a girth at 
least 6.

q q× ( -1) ( -1)q q×

, ,0 , 2

0 0, 0,0 0, 2
,1

2 2, 2,0 2, 2

q

q
qc

q q q q q

∞ ∞ ∞ ∞ ∞ −

∞ −

− − ∞ − − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

B A A A
B A A A

H

B A A A

L
L
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L
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IV. Construction of QCIV. Construction of QC--LDPC Codes Based on the Minimum WeightLDPC Codes Based on the Minimum Weight
CodewordsCodewords of RS Codes with Two Information Symbols (Contof RS Codes with Two Information Symbols (Cont’’d)d)

• For                    , let                   be a subarray of Hqc,1. If                
does not contain zero matrices, then the column and row weights of 

are and    , respectively. Then null space of gives 
a regular QC-LDPC code of length                     with rate at least      
and minimum distance at least    +1 for odd     and    +2 for even   . 

• If contains zero matrices, then it has two column weights,   -1 
and    , and two row weights    -1 and . Then the null space of            
gives a near regular QC-LDPC code. 

1 , qγ ρ≤ ≤ γ ρ× ,1( , )qc γ ρH

,1( , )qc γ ρH γ ρ ,1( , )qc γ ρH
( -1) n qρ= ( - ) /ρ γ ρ

γ γ γ γ

,1( , )qc γ ρH γ

γ ρρ ,1( , )qc γ ρH

,1( , )qc γ ρH
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IV. Construction of QCIV. Construction of QC--LDPC Codes Based on the Minimum WeightLDPC Codes Based on the Minimum Weight
CodewordsCodewords of RS Codes with Two Information Symbols (Contof RS Codes with Two Information Symbols (Cont’’d)d)

• The above construction gives a family of RS-based QC-LDPC codes with 
various lengths, rates and minimum distances, whose Tanner graph have 
girth at least 6. 

• QC-LDPC codes can be encoded using simple shift-register with 
complexity linearly proportional to the number of parity-check bits. 

Z. -W. Lee, L. Chen, S. Lin, W. Fong and P. -S. Yeh, "Efficient encoding 
of quasi-cyclic LDPC codes," submitted to IEEE Trans. Commun., 
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Example III

• In this example, the m-w codewords of the (32,2,31) extended cyclic RS 
code over GF(25) is used for code construction. Based on the m-w 
codewords of this RS code, we form a 32x32 array of 31x31 circulant
permutation and zero matrices Hqc,1. 

• Set    =10 and    =32, Let Hqc,1(10,32) be the subarray that consists of the 
first 10 rows of Hqc,1. It is a 310x992 matrix over GF(2) with row weight 
31 and two column weights 9 and 10. The null space of Hqc,1(10,32) gives 
a (992,802) QC-LDPC code with rate 0.8084 and minimum distance at 
least 10. The error performance of this code is shown in Figure 3. At the 
BER of 10-6, it achieves 6 dB coding gain over the uncoded BPSK and 
performs within 2.0 dB from the Shannon limit. 

γ ρ
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Figure 4.



37

Example IV

• For code construction, we use the (32,2,31) extended cyclic RS code over 
GF(25). Set     =   =32. Then Hqc,1(32,32) is the full array Hqc,1 constructed 
based on all the m-w codewords of the (32,2,31) RS code. The column 
and row weights of Hqc,1(32,32) are both 31. 

• The null space of Hqc,1(32,32) gives a (992,750) QC-LDPC code with rate 
0.756 and minimum distance at least 32. Its performance is shown in 
Figure 4. At the BER of 10-6, it achieves almost 7 dB coding gain over the
uncoded BPSK and performs only 1.9 dB from the Shannon limit. 

γ ρ
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Figure 5.
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V. Construction of QCV. Construction of QC--LDPC Codes Based on RS LDPC Codes Based on RS 
Code in Polynomial Form Code in Polynomial Form 

• RS codes were originally defined in polynomial form in frequency
domain. Using the polynomial form, arrays of circulant permutation 
matrices that satisfy the RC-constraint can also be constructed from the 
codewords of an RS code over a prime field GF(p) with two information 
symbols, where p is a prime. 

• Since GF(p) is a prime field, the set of integers, {0, 1,…, p-1}, gives the 
set of elements of GF(p). The addition and multiplication of GF(p) are 
modulo-p addition and multiplication.
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V. Construction of QCV. Construction of QC--LDPC Codes Based on RS LDPC Codes Based on RS 
Code in Polynomial Form (ContCode in Polynomial Form (Cont’’d)d)

• Let                      be the set of p2 polynomials 
of degree 1 or less with coefficients from GF(p). For each polynomial 
in    , define the following p-tuple over GF(p):

, 

where with         . Then the set of  p2 p-tuples over 
GF(p),

(3)                           

gives a (p, 2, p-1) RS code over GF(p) with two information symbols. 
The RS code Cb given by (3) is not cyclic.

{ }1 0 1 0( ) : , GF( )X a X a a a p= = + ∈aP

P

( )(0), (1), , ( 1)p= −v Ka a a

1 0( )j a j a= ⋅ +a GF( )j p∈

( ){ }(0), (1), , ( 1) : ( )b p X= = − ∈C v Ka a a a P
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V. Construction of QCV. Construction of QC--LDPC Codes Based on RS LDPC Codes Based on RS 
Code in Polynomial Form (ContCode in Polynomial Form (Cont’’d)d)

• Consider the subset               of zero-degree 
polynomials of    . Then the set of p-tuples,

(4)

constructed from the zero-degree polynomials in forms a subcode of Cb

and is a (p, 1, p) RS code over GF(p).

{ }0 0 0( ) : GF( )X a a p= = ∈aP
P

( ){ }
{ }

0 0

0 0 0 0

(0), (1), , ( 1) : ( )

    ( , , , ) : GF( ) ,

p X

a a a a p

= − ∈

= ∈

C K

K

a a a a P

0P
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V. Construction of QCV. Construction of QC--LDPC Codes Based on RS LDPC Codes Based on RS 
Code in Polynomial Form (ContCode in Polynomial Form (Cont’’d)d)

• Partition Cb with respect to C0 into p subsets, C0, C1, … , Cp-1, where

(5)

for               , Ci contains p codewords in Cb of the following form: 

.              (6)

• Ci is called a cloud of codewords of Cb. The codeword 

in Ci is called the center of Ci and the other p-1 codewords in Ci are 
called satellites.

( ){ }0 0(0), (1), , ( 1) : ( ) , GF( ) ,i p X iX a a p= − = + ∈C Ka a a a

0 i p≤ <

0 0 0( 0 , 1 , , ( 1) )i a i a i p a⋅ + ⋅ + ⋅ − +K

( 0,  1, ,  ( -1))i i i p⋅ ⋅ … ⋅
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V. Construction of QCV. Construction of QC--LDPC Codes Based on RS LDPC Codes Based on RS 
Code in Polynomial Form (ContCode in Polynomial Form (Cont’’d)d)

• For each element                  , we define its location vector as a p-tuple,
, with zj=1 and all the other components equal to zero. 

For                 , form a matrix Gi over GF(p) with the codewords in 
the ith cloud Ci as rows. For             , the kth column of Gi consists of 
the following components:                                       , which form all 
the p elements of GF(p). From (4) and (5), we readily see that any two 
rows in Gi differ in all p positions.

0 i p≤ <

GF( )j p∈

0 1 1( , , , )j pz z z −=z K
p p×

0 k p≤ <
0, 1, , ( -1)i k i k i k p⋅ + ⋅ + … ⋅ +
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V. Construction of QCV. Construction of QC--LDPC Codes Based on RS LDPC Codes Based on RS 
Code in Polynomial Form (ContCode in Polynomial Form (Cont’’d)d)

• Replacing each entry in Gi by its location vector, we obtain a row of p
submatrices, , where the kth submatrix has 

the location vectors of                                         as the rows, 

• Under modulo-p addition and multiplication, the location vector

of the field element  is the cyclic-shift of the 
location vector                   of the field element for

. Therefore, Ai,k is a    circulant permutation matrix for 
and Bi is a row of  p circulant permutation matrices.

p p× ,0 ,1 , 1i i i i p−⎡ ⎤= ⎣ ⎦B A A AK
0, 1, , ( -1)i k i k i k p⋅ + ⋅ + ⋅ +K

,

( 0)
( 1)

.              (7)

( ( 1))

i k

i k
i k

i k p

⋅ +⎡ ⎤
⎢ ⎥⋅ +⎢ ⎥=
⎢ ⎥
⎢ ⎥⋅ + −⎣ ⎦

z
z

A

z
M

( ( 1))i k j⋅ + +z ( 1) i k j⋅ + +

( )i k j⋅ +z i k j⋅ +
0 j p≤ <

0 k p≤ <

p p×
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V. Construction of QCV. Construction of QC--LDPC Codes Based on RS LDPC Codes Based on RS 
Code in Polynomial Form (ContCode in Polynomial Form (Cont’’d)d)

• Form the following           array of          circulant permutation matrices:

Hqc,2 is a              matrix with constant column weight p and constant row 
weight p. Since the rows of Hqc,2 correspond to codewords of Cb and two 
codewords in Cb can have at most one location with the same code 
symbol, no two rows (or two columns) in Hqc,2 have more than one 1-
component in common. Consequently, Hqc,2 satisfies the RC-constraint.

p p× p p×

0,0 0,1 0, 1

1,0 1,1 1, 1
,2

1,0 1,1 1, 1

        (8)

p

p
qc

p p p p

−

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A A A
A A A

H

A A A

L
L

M M O M
L

2 2p p×
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V. Construction of QCV. Construction of QC--LDPC Codes Based on RS LDPC Codes Based on RS 
Code in Polynomial Form (ContCode in Polynomial Form (Cont’’d)d)

• For                    , let                    be a subarray of Hqc,2. Then                
is a                matrix over GF(2) with column and row weights 

and    . 

• The null space of gives a QC-LDPC code with girth at least 6. 

1 , pγ ρ≤ ≤ ,2 ( , ) qc γ ρH γ ρ×

,2 ( , ) qc γ ρH p pγ ρ×
γ ρ

,2 ( , ) qc γ ρH
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VI. Construction by Masking VI. Construction by Masking 

• Given a  array of permutation (or circulant permutation) matrices, 
say          , Hqc,1 or Hqc,2 , a set of permutation matrices can be masked 
(i.e., replaced by zero matrices) to generate a new structured LDPC code 
with good performance.

• Masking operation can modeled mathematically as a special matrix
product.  

γ ρ×

( , )γ ρH
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VI. Construction by Masking (ContVI. Construction by Masking (Cont’’d)d)

• To illustrate the masking operation, we use the          array 
= [Ai,j] of circulant permutation matrix as the base matrix for masking. 
Let                = [wi,j]  be a          matrix over GF(2). Define the following 
matrix product:                                                 

,

where for wi,j=1 and                      (a             zero 
matrix) for wi,j=0. We call the masking matrix,                 the 
base matrix, and the masked matrix.  In masking, a set of
circulant permutation matrices in the base matrix                  is masked by 
the 0-entries of the masking matrix              . If contains zero
submatrices, we avoid to mask these zero submatrices. 

γ ρ× ,1( , )qc γ ρH

( , )γ ρW γ ρ×

,1 ,1 , ,( , ) ( , ) ( , )qc qc i j i jwγ ρ γ ρ γ ρ ⎡ ⎤= ⊗ = ⎣ ⎦M W H A

, , ,i j i j i jw =A A , ,i j i jw =A O ( -1) ( -1)q q×

( , )γ ρW ,1( , )qc γ ρH
( , )γ ρM

,1( , )qc γ ρH
( , )γ ρW ,1( , )qc γ ρH
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VI. Construction by Masking (ContVI. Construction by Masking (Cont’’d)d)

• The masked matrix                   is an array of circulant permutation and 
zero matrices. The distribution of circulant matrices in                    is 
identical to the distribution of the 1-entry in the base matrix               . 

• Masking operation preserves the RC-constraint on the rows and columns 
of the base matrix and hence also satisfies the RC-constraint. 
Furthermore, masking reduces the density of 1-entries of the base matrix 
and hence the masked matrix is a sparser matrix. Consequently, 
the Tanner graph of has either larger girth or smaller number 
of short cycles than that of the base matrix. 

,1( , )qc γ ρM

,1( , )qc γ ρM
( , )γ ρW

,1( , )qc γ ρM

,1( , )qc γ ρM

,1( , )qc γ ρM
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VI. Construction by Masking (ContVI. Construction by Masking (Cont’’d)d)

• If the girth of the Tanner graph of the masking matrix is          , 
then the girth of the Tanner graph of the masked matrix         is at 
least  g . Since the size of a masking matrix is in general small, it is quite 
easy to construct masking matrices with relatively large girth, say 6, 8, 10, 
and 12, either by computer search or algebraic methods. 

• The null space of the masked matrix                   gives a QC-LDPC code 
Cqc,1 with girth at least 6. 

• If the masking matrix is a regular matrix, is a regular 
QC-LDPC code. If the masking matrix has varying column and 
varying row weights, then Cqc,1 is an irregular QC-LDPC code. 

( , )γ ρW

,1( , )qc γ ρM

6g ≥

,1( , )qc γ ρM

( , )γ ρW ,1( , )qc γ ρC
( , )γ ρW
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VI. Construction by Masking (ContVI. Construction by Masking (Cont’’d)d)

• Masking is particularly effective for constructing structured irregular 
codes which have encoding advantage over random irregular codes.

• One approach to construct irregular LDPC codes is based on variable- and 
check-node degree distributions of the code graphs derived from density 
evolution of the messages passed between the two types of nodes in a 
belief propagation decoder. 

T. J. Richardson, M. A. Shokrollahi, and R. Urbanke, "Design of 
capacity-approaching irregular low-density parity-check codes," IEEE 
Trans. Inform. Theory, vol. 47, no.2, pp. 619-637, Feb. 2001. 
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VI. Construction by Masking (ContVI. Construction by Masking (Cont’’d)d)

• Let                           and                             ,  be the variable- and check-

node degree distributions of a code graph designed for a given rate R, 

where vi and ci are the fractions of variable- and check-nodes that have 

degree i, and dv anc dc are the maximum variable- and check-node 

degrees, respectively. 

• Construct a masking matrix with column and row weight 
distributions identical (or close) to the degree distributions v(X) and c(X), 
respectively, by computer search. Masking the base matrix       
with              , then the masked matrix                   has column and row 
weight distributions identical (or close) to v(X) and c(X), respectively. 

-1

1
( )

vd
i

i
i

X v X
=

=∑v 1

1
( )

cd
i

i
i

X c X −

=

=∑c

( , )γ ρW

,1( , )qc γ ρH
( , )γ ρW ,1( , )qc γ ρM
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VI. Construction by Masking (ContVI. Construction by Masking (Cont’’d)d)

• The masked matrix is an array of circulant permutation and 
zero matrices. The null space of gives an irregular QC-LDPC 
code that can be encoded with simple shift-registers. 

• Proper masking gives very good structured regular and irregular LDPC 
codes that perform just as well as random LDPC codes. 

• J. Xu, L. Chen, I. Djurdjevic, S. Lin and K. Abdel-Ghaffar, "Construction 
of regular and irregular LDPC codes: geometry decomposition masking," 
submitted to IEEE Trans. Inform. Theory, 2004. 

,1( , )qc γ ρM

,1( , )qc γ ρM
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VI. Construction by Masking (ContVI. Construction by Masking (Cont’’d)d)

• The following degree distributions 

are derived based on density evolution for a code of rate 1/2. 

• The next three examples give three long irregular QC-LDPC codes of rate 
1/2 constructed based on the above degree distributions. 

2 5 6

7 8 9 27 29

( ) 0.4410 0.3603 0.00171 0.03543
0.09331 0.0204 0.0048 0.000353 0.04292

X X X X X
X X X X X

= + + + +

+ + + +

v

7 8 9( ) 0.00842 0.99023 0.00135X X X X= + +c
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Figure 6.   LDPC(16002, 8001) Code Performance
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Figure 7.   LDPC(32130, 16065) Code Performance
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Figure 8.   LDPC(64386, 32193) Code Performance
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VII. Construction Based on Finite Geometries VII. Construction Based on Finite Geometries 

• Construction based on the hyperplane, lines and points of either Euclidean 
and projective geometries. 

• LDPC codes constructed are either cyclic or quasi-cyclic with large 
minimum distance and girth at least 6. 

• No or very low error-floor. 
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Example VIII (NASA/GSFC Code) 

• Construction geometry: 3-dimensional Euclidean geometry EG(3,23) 

• Parity-check matrix H: a 2x16 array of 511x511 circulant matrices, each 
having weight 2. The column and row weights of H are 4 and 32, 
respectively.

• Code: a (8176,7156) QC-LDPC code with rate 7/8 and girth 6 

• Shannon gap at the 10-6: 1 dB  

• Error-floor: no down to the BER of 10-12 (verified by FPGA) 

• Decoding convergence: very fast, only 5 iteration are needed 

• Encoding: Two 511-stage shift-register-adder-accumulator (SRAA) units 
for serial encoding 
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Figure 9.   LDPC(8160, 7140) Code Performance
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VIII. ReedVIII. Reed--Solomon Codes V.S. LDPC Codes Solomon Codes V.S. LDPC Codes 

• RS codes by far form the best class of codes. 

• Decoding methods: algebraic decoding, reliability-based algebraic 
decoding, list decoding and turbo decoding through decomposition and 
self-concatenation. 

• If an effective soft-decision scheme (or algorithm) for decoding RS codes 
can be devised, then RS codes will outperform all the other codes, 
including LDPC codes. There is no such decoding algorithm. 

• The next few graphs show the performance of two popular RS codes and 
some short LDPC codes proposed for 10GBASE-T. The purpose of these 
graphs is not for comparison, because the code lengths, rates, and types of 
decoding are different. 
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Figure 10
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Figure 11
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Figure 12
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IX. Turbo Decoding of RS Codes IX. Turbo Decoding of RS Codes 

• RS codes can be turbo encoded and decoded through decomposition and 
self-concatenation. 

C. Y. Liu and S. Lin, "Turbo encoding and decoding of RS codes through 
binary decomposition and self-concatenation," to appear in IEEE Trans. 
Communications, vol. 52, no. 9, September 2004. 

• This turbo decoding of RS codes can achieve large coding over algebraic, 
reliability-based and current list decoding algorithms or schemes. 
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IX. Turbo Decoding of RS Codes IX. Turbo Decoding of RS Codes 

• Figure 13 shows the performances of the (127,113,15) RS code over 
GF(27) with algebraic, GMD, Chase-GMD and turbo decoding. We see 
that at BER of 10-6, Turbo decoding achieves almost 2 dB coding gain 
over the algebraic decoding. 

• The (255,239,17) RS code over GF(28) can be practically decoded based 
on two component codes, each having a trellis with 256 states. 
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Figure 13.   Bit error performance of the (127, 113, 15) RS code


