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• Dan Dove, HP
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• Chris DiMinico, MC Communications
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• Michael Laudon, Force 10 Networks
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OutlineOutline
• Overview
• Baud Rate: Info. Bits/Baud
• Equalization
• FEC/Trellis Coding
• Launch Power Backoff
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Overview: Key Choices to MakeOverview: Key Choices to Make
• Line coding

– Starts with baud rate (bandwidth)
– Exact # levels of PAM tied to FEC choice
– May requires overhead for MAC control symbols

• Depends on coding

• FEC choice & partition
– Includes both line coding & partition

• Launch voltage
– Power consumption/Noise immunity tradeoff
– EMI constraint
– Power backoff for short lines
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Overview: Elements ConsideredOverview: Elements Considered
• Channel models

– 55m Class E Objective:
• Cabling ad hoc IL, NEXT, FEXT & RL models 

(http://www.ieee802.org/3/10GBT/public/material/10GBASE-
T_Cat6_Model.zip)

• Class E ad hoc ANEXT model, Class E ISO proposal (15 
dB/decade)

– 100m Class E+ Objective:
• Class E ad hoc IL, NEXT, FEXT & RL models
• Proposals from TR42, ISO, and 3rd parties

• EMI models
– EMI radiative transfer function derived from measurements 

presented to IEEE 10GBASE-T Study Group
• Component effects

– Magnetics bandwidths
– Timing recovery effects

• Info bits/baud – determines baud rate
– Based on Optimal DFE signal processing
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Baud Rate: Info bits/baud (/pair)Baud Rate: Info bits/baud (/pair)
• Determines necessary & used bandwidth

– Performance, Power & EMI Constrained
• DFE systems generally have a unique optimum
• Performance vs. baud rate on DFE channels is 

not identical to AWGN channels
– Rate loss is channel dependent

• (Rate loss in DFEs under “pinch off” conditions: ref. T1E1.4/97-241)

• Optimal DFE Margin (Salz) normalized to 
bits/baud:
– Uncoded Margin = -10*log10(Salz_MSE)-

Capacity_SNR+12.27dB
– Capacity SNR = 10*log10(2^(2*bits/baud/pair) – 1) dB
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Baud Rate: 55m Class E Ad Hoc ModelBaud Rate: 55m Class E Ad Hoc Model
• Very shallow optimum
• ANEXT Model exhibits <10dB/decade ANEXT 

slope
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Baud Rate: 55m Class E with 15dB / Baud Rate: 55m Class E with 15dB / 
decade ANEXT modeldecade ANEXT model
• Optimum shifts towards 3 bits/baud & steepens
• ANEXT Model based on presentations

– Conforms with data(hayes_1_0303.pdf, abughalazeh_1_0903.pdf)
– ANEXT Loss = 47-15log10(f/100) + 2.5 dB (limit line adj)
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Baud Rate: 100m Class E+ ExampleBaud Rate: 100m Class E+ Example
• DFE Margin vs. info bits/baud strongly favors 

lower baud rates
– ANEXT Loss = 60-15*log10(f/100) + 2.5dB (limit line adj.)
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Baud Rate: EMIBaud Rate: EMI
• Used Field Radiated EMI measurements to 

estimate transmit PSD within FCC Class A
– Issues emerge above 500 MHz

Transmit PSD with 3 dB Margin to FCC Class A EMI
(from measured emissions)
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Other ComponentsOther Components
• Magnetics performance falls off beyond 500 MHz

– Adversely effects noise susceptibility & EMI in addition to 
received SNR

• Timing jitter degrades SNR as baud rate increases 
(10*log10(fb1/fb2) relative loss in ADC quant noise PSD)

ref: dihn_1_0104.pdf
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Baud Rate: ConclusionsBaud Rate: Conclusions
• Choice of info bits/baud (baud rate) is a function 

of tradeoffs in:
– Long-line Performance
– ANEXT Robustness
– Meeting EMI
– Other component effects (e.g., Magnetics, timing)

• 3 bits/baud/pair is within 1 dB of optimum point 
for DFE SNR for all cases, and closer on hard 
cases

• 3 bits/baud/pair allows transmit PSD to roll off 
before 500 MHz
– Meets EMI, aligns with magnetics rolloff
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Equalization: TomlinsonEqualization: Tomlinson--HarashimaHarashima
• Alleviates DFE error propagation in coded systems

– Cost is large amplitude “dither” element added to signal
• Transmit power penalty is small for large # PAM levels

– Problems:
• Dither couples through NEXT, FEXT & Echo paths
• High PAR & extra dynamic range increases complexity
• Incompatible with shaping gain
• Requires tight circuit timing loop for feedback filter

TH Precoded Channel Equalizer Block Diagram
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Equalization: Equalization: PrecodedPrecoded DFEDFE
• Adaptive Linear precoding can shape DFE 

response to minimize error propagation
– Small transmit power penalty for preemphasis

• 10GBASE-T not generally transmit power limited
– Can be combined with other transmit filtering
– Can be combined with constellation shaping gain
– Feedforward structures minimize circuit timing issues
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FEC/Trellis coding: LatencyFEC/Trellis coding: Latency
• Applications show need for lower latency codes

– Distributed computing, clustering require capability for low 
latency operation

• Includes propagation, code and signal processing latency
• Long lines mask PHY latency (propagation delay)

• Generic Ethernet places no hard requirement on 10GBT
– Legacy of the fact that 802.3ae was engineered for multi-km 

links (light time > 5 usec)
• Previous Ethernet has not stated latency as a requirement

• High latency codes PERMANENTLY bar technical 
innovation from achieving low latency operation

• Additional coding gain can be achieved by layering an 
outer code, if necessary, on long lines without impairing 
minimum PHY latency on shorter lines
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Code Proposal: 4DCode Proposal: 4D--4W4W--Trellis CodeTrellis Code
• 4D (across pairs) PAM-10 with 4-way time-interleave 

and constellation shaping
• Advantages

– Meets 3 bits/baud information rate
• Encodes control symbols into modulation, avoiding rate loss

– Provides for minimal latency operation (<< .25usec)
– Provides for constellation shaping gain (0.64 dB)
– 4-way interleave allows lower-rate decoder clocking
– Interleave mitigates noise correlation effects
– Interleave mitigates error propagation effects
– Low complexity hardware encoding & decoding
– Allows concatenation for layering block FEC if desired for 

improved impulsive noise or long line performance
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Line Code Proposal: 4DLine Code Proposal: 4D--4W4W--PAM10PAM10
• 8st 4D Ungerboeck code used in 1000BASE-T

– 2^13 possible encoded symbols
– 10,000 constellation points
– Remaining 1808 points can be used for control symbols

• 4 Way time interleaving, code is 4D across pairs
• Balanced constellation

– No polarity scrambler required
• Shaped constellation (0.64 dB shaping gain)
 

-9 -7 -5 -3 -1 +1 +3 +5 +7 +9 
512 896 896 896 896 896 896 896 896 512 

Table 1: 1D PAM Level Rate of Occurrence in the 4D Mapping (8192 points) 
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4D4D--4Way PAM4Way PAM--10 Code Performance10 Code Performance

Slicer Input SNR (dB)

19 20 21 22 23 24 25 26 27
10

-14

10
-12

10-10

10
-8

10
-6

10
-4

10
-2

10
0

Coded PAM10 simulation SER
Coded PAM10 Theory SER
Coded PAM10 Theory BER

26.2 dB



G. Zimmerman SolarFlare Communications 20

Launch Power TradeoffsLaunch Power Tradeoffs
• Launch power < 10 dBm due to EMI constraints
• Long line launch power > 6 dBm due to 

1000BASE-T ANEXT constraints
• Negotiated launch power backoff

– Widely used in deployed DSL standards to mitigate 
asymmetric link near/far problem

– Lines less than 50m
– Negotiated at Startup, based on SNR and/or attenuation
– Minimum backoffs to be specified in the standard
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Baud Rate ProposalBaud Rate Proposal
• Motion #1:  That 10GBASE-T baseline baud rates 

consistent with 3 information bits/baud/pair
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Coding proposalCoding proposal
• Motion #2: That 10GBASE-T adopt as a 3 

bits/baud/pair 4D-4Way PAM-10 code with 
integrated control symbols
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Power Power BackoffBackoff ProposalProposal
• Motion #3: That 10GBASE-T adopt a power-

backoff mechanism adapted on startup for use on 
shorter lines – levels and metrics TBD.
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Backup SlidesBackup Slides
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Relation of Rate Loss in DFE systems Relation of Rate Loss in DFE systems 
under pinchunder pinch--offoff
• Optimum DFE Result:

• When f_SNR(f) is small for f>fbaud, increasing 
the baud rate does not change the value of the 
integral as in an AWGN channel
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ANEXT Robustness: Variability of Required Channel Capacity with ANEXT Robustness: Variability of Required Channel Capacity with 
Constant SNR ConstraintConstant SNR Constraint

• ANEXT = Y + 
15*log10(f/100), where Y is 
adjusted to produce target 
receive SNR

• Channel contains 4 
connectors + 10 m patch 
cords; length adjusted with 
horizontal cable span only

•Target SNR includes
• BER = 10e-12
• 5.5 dB coding gain
• 3 dB margin

• Impairments (Class E):
• Echo = 55 dB
• NEXT = 40 dB
• FEXT = 25 dB
• Noise = -150 dBm/Hz

• Transmit power = 8 dBm
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ANEXT Robustness: Value of ANEXT Coupling Constant (Y) with ANEXT Robustness: Value of ANEXT Coupling Constant (Y) with 
Constant SNR ConstraintConstant SNR Constraint

• ANEXT = Y + 
15*log10(f/100), where Y 
is adjusted to produce 
target receive SNR

• Channel contains 4 
connectors + 10 m patch 
cords; length adjusted 
with horizontal cable 
span only

• Target SNR includes
• BER = 10e-12
• 5.5 dB coding gain
• 3 dB margin

• Impairments:
• Echo = 55 dB
• NEXT = 40 dB
• FEXT = 25 dB
• Noise = -150 dBm/Hz

• Transmit power = 8 dBm

40 50 60 70 80 90 100
40

45

50

55

60

65

70

75

Channel length (meters)

A
N

E
X

T 
C

on
st

an
t

Value of ANEXT Constant vs Class E Channel Length for Different PAM Codes

2 bits/symbol: 23 dB Rcv SNR
3 bits/symbol: 29 dB Rcv SNR
4 bits/symbol: 35 dB Rcv SNR

ref: TR42.7-04-02-012



G. Zimmerman SolarFlare Communications 28

Error Propagation PerformanceError Propagation Performance

20 21 22 23 24 25 26 27
10-8

10
-7

10-6

10-5

10
-4

10-3

10-2

10-1

Error Prop Reduction  4D-Pairs 8st Coded PAM10, ERPX

EQ Output SNR (dB), residual ISI compensated

PAM10 DFE 4D-SER
PAM10 DFE  w/ perf FB 4D-SER
PAM10 1way Vit 4D-SER
PAM10 1way Vit w/ perf FB 4D-SER
PAM10 4way Vit 4D-SER
PAM10 4way Vit w/ perf FB 4D-SER
PAM8 AWGN 4pr SER
PAM10 AWGN 4D8st Vit 4pr-SER

Slicer SNR (dB)

Sy
m

bo
l E

rr
or

 R
at

e



G. Zimmerman SolarFlare Communications 29

Coding Description: EncoderCoding Description: Encoder
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Coding Description: Trellis DiagramCoding Description: Trellis Diagram
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