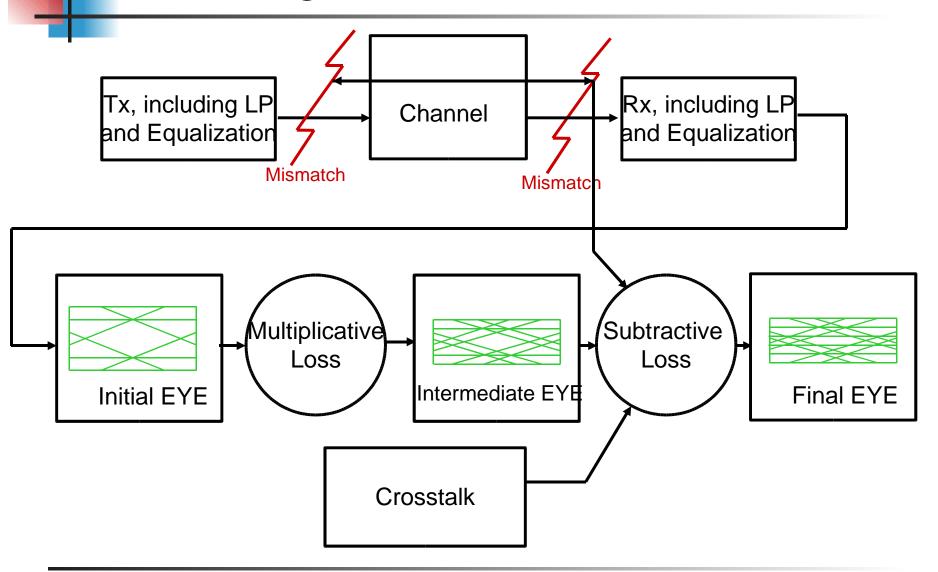


Channel Model Ad Hoc: Agenda and General Information

Channel Model Ad Hoc Teleconference 2005 May 4

Charles Moore
Agilent Technologies
charles_moore@agilent.com

If you are present on today's call, please send me an e-mail indicating your attendance.


Schedule of Events

- <u>Teleconference:</u> Wednesday, May 4 (10am PST)
- <u>Teleconference:</u> Wednesday, May 11 (10am PST)
- Wednesday, May 11 (midnight EST)
 - Deadline for requests for presentation time.
- Monday May 16 Wednesday May 18
 - IEEE P802.3ap Task Force Meeting
 - Austin TX

Meeting Agenda

- Carry-over items
- New business
 - Link Budget model
 - Healey: Cross talk
 - Sawyer: Duty cycle distortion
- Walk-in items
- Straw polls

Link Budget model

Link Budget Continued

Possible items in link Budget:

1. Tx return loss:

Multiplicative: (gain-attenuation)

```
fixed or channel SDD11 dependent
2. Rx return loss:
                             fixed or channel SDD22 dependent
3. Channel loss:
                             Computed from channel
4. Tx equalization penalty:
                             relative to Popescu non ideal DFE model #2
  Rx equalization penalty:
                            (see Popescu 1 0205)
6. Hybrid EYE loss:
                             alternative to 1-5 by hybrid computation
7. Tx jitter other than DCD: fixed
  Jitter multiplication:
                             One treatment of DCD
                             fixed
9. Rx jitter:
```

Link Budget Continued

Possible items in link Budget:

Additive: (direct deduction from EYE height)

- 1. Cross talk:
- 2. Un-equalizable ISI:
- 3. Re-reflection:
- 4. DCD penalty
- 5. Receiver margin:
 - a. Noise
 - b. Fixed offset
 - c. Minimum Slice input

Channel cross talk dependent may be covered by Hybrid model may be covered by Hybrid model fixed, alternate treatment of DCD fixed, consists of:

Link Budget: notes

- #1. Channel gain might be computed by the method quoted by Popescu, Cunningham for ideal DFE
- #2. Some of our equalization is done by (linear) Tx equalization. This will give smaller signal than available to ideal DFE. This effect could be done by treating the Tx equalization as part of the channel.

The fixed items are needed to complete the budget but only the channel dependent items allow us to specify the channel