Tx Equalizer Coefficient issues

Andre Szczepanek

Texas Instruments a-szczepanek@ti.com

Tx Equalizer Coefficient issues

802.3ap Interim January 2006

Comment #64

- The off-axis requirements in table 72-11 do not match the governing equations of the transmit equalizer. All 3 measurement points are dependent on all 3 coefficients.
 - If Vpk is kept constant, a step on any coefficient will affect at least two of the 3 measurement points.
 - If Vpk is not kept constant, a step on any coefficient will affect all 3 measurement points.
- Recalculate the off-axis entries based on the governing equations of the transmit

Comment #65

- Draft 2.0 required that C_q shall be adjusted to maintain Vpk/A over all transmitter states (k). This requirement has been removed in Draft 2.1, and the transmitter output waveform requirements have been changed to render constant Vpk implementations non-compliant.
- Implementing Tx equalization on SERDES using assignable CML output fingers is an area-efficient alternative to DAC style structures. Forty fingers of 2.5% meet the performance requirements adopted in May Motion #10, whilst automatically providing constant Vpk. However the coefficient step trading (to/from C₀) required to maintain constant Vpk mean that the measured step changes in Table 72-11 are doubled.
- We are concerned that the changes in Draft 2.1, preclude the use of natively constant-Vpk transmit structures for no demonstrable benefit.
 - Of course it is possible to make a fingered approach work with non-constant Vpk, by doubling native resolution, or by turning fingers off, but this increases transmitter complexity and area for the dubious benefit of reduced output swing.
- Re-instate the constant Vpk requirement, and reflect this requirement in Table 72-11 values.
 - Or allow constant Vpk by providing an additional or modified Table 72-11.

802.3ap Interim January 2006

Observations

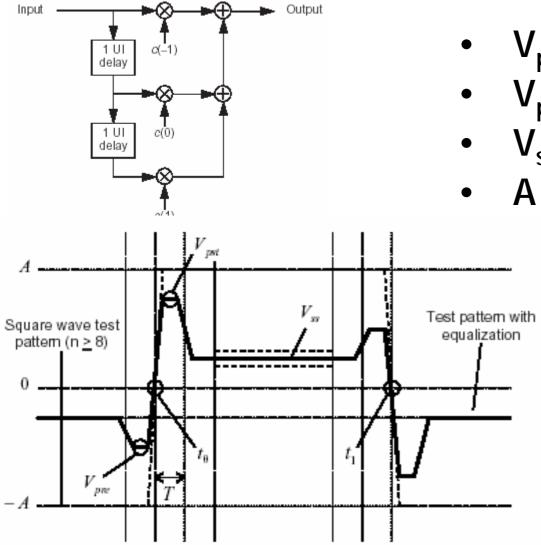
- There are 2 schools of thought on TX FIR implementations
 - 1) Constant V_{pk}
 - Does not require Cursor control
 - Maximizes signal strength
 - Usually augmented by an overall gain control
 - Allows signal strength to be adjusted independent of equalization
 - Allows link power reduction
 - 3 tap FIR only has 2 degrees of freedom (128 states)
 - Leads to simpler, more efficient, implementations
 - 2) Independent coefficients (Variable V_{pk})
 - Analogous to Rx DFE coefficients
 - Training algorithms resemble Rx algorithms
 - 3 tap FIR has 3 degrees of freedom (>1000 states ?)
 - Difficult to adjust signal strength just via coefficients
 - Still need gain control
- All contributed Tx FIR analysis has been for constant V_{pk}

Changes

- The changes recommended in healey_01_0905 to clean up the transmitter waveform tests removed the constant V_{pk} requirement.
 - Rather than just removing a requirement on non-constant Vpk transmitters it made constant Vpk transmitters non-compliant
 - The bulk of this presentation was on improving the test methodology
 - In this context, I don't believe the practical impact of removing V_{pk} was realized.
 - It wasn't discussed
 - I have voted NO on the ballot based on this change to ensure that we discuss it now
- There may be practical reasons to limit ourselves to one style of equalizer
 - Is there an equalizer training algorithm that will work with both?
 - Maintaining constant Vpk in the training commands will work

Conclusion

- I am concerned that in order to reach consensus we have ended up with a lowest common denominator approach.
 - Efficient constant Vpk implementations are now excluded
 - We still have issues with (comments on) the Tx test methodology
- I'd like to see a return to a constant Vpk based test methodology.
 - Maintain Vpk by changing C_0 in concert with pre or post cursor in the training packets.
 - This is compatible with either implementation
- Are we wise to not define an algorithm ?


Backup slides

Tx Equalizer Coefficient issues

802.3ap Interim January 2006

Measurements are not independent

•
$$V_{pre} = +c(-1) -c(0) -c(+1)$$

• $V_{pst} = +c(-1) +c(0) -c(+1)$
• $V_{ss} = +c(-1) +c(0) +c(+1)$

$$A = V_{pst} - V_{pre} - V_{ss} = -c(-1) + c(0) - c(+1)$$

- Note c(-1) & c(+1) are always negative !
- So A = |C(-1)| + |C(0)| + |C(+1)|

Tx Equalizer Coefficient issues

802.3ap Interim January 2006

Interdepenency (A not constant)

- V_{pre}, V_{pst}, V_{ss} & A are all sums of the 3 coefficients
 They differ only in the sign of the coefficients
- If A is not kept constant, a step in any coefficient will cause an equal changes in V_{pre} , V_{pst} & V_{ss}

- The effect will differ only in sign

- c(-1)++ causes V_{pre} ++ , V_{pst} ++ & V_{ss} ++
- c(0)++ causes V_{pre}-- , V_{pst}++ & V_{ss}++
- c(+1)++ causes V_{pre} -- , V_{pst} -- & V_{ss} ++

Interdepenency (with constant Max amplitude)

- To keep A constant (-c(-1) +c(0) -c(+1)) must be kept constant.
 - A change in one coefficient must be offset by an equivalent total change in the other 2 coefficients.
- Practical implementations cannot arbitrarily scale output.
 - The high speed DSP needed to scale the output to keep A constant is not practical at 10Gbps
 - Must make simple changes to the other coefficients Eg
 - Change other two coefficients by 1/2 step each
 - Or change one of the other coefficients by one step

Effect of ¹/₂ step trade

• Consider a change in one coefficient offset by ½ step changes in the other 2 coefficients.

- If
$$C(-1)$$
++, $C(0)$ += $\frac{1}{2}$, $C(+1)$ -= $\frac{1}{2}$
• V_{pre} = + $C(-1)$ - $C(0)$ - $C(+1)$ = V_{pre} +=

•
$$V_{pst} = +C(-1) + C(0) - C(+1) = V_{pst} + =2$$

•
$$V_{ss} = +c(-1) + c(0) + c(+1) = V_{ss}$$

• One measurement point changes by one step, another by two steps, the other stays the same.

Effect of 1 step trade

- Consider offsetting a change in c(-1) or c(+1) by a 1 step change in c(0).
 - If c(-1)++, C(0)++, no change in C(+1) for constant A

•
$$V_{pre} = +c(-1) - c(0) - c(+1) = V_{pre}$$

• $V_{pst} = +c(-1) + c(0) - c(+1) = V_{pst} + =2$
• $V_{ss} = +c(-1) + c(0) + c(+1) = V_{ss} + =2$
If $c(+1)++$, $C(0)++$, no change in $C(-1)$ for constant A
• $V_{pre} = +c(-1) - c(0) - c(+1) = V_{pre} - =2$
• $V_{pst} = +c(-1) + c(0) - c(+1) = V_{pst}$
• $V_{ss} = +c(-1) + c(0) + c(+1) = V_{ss} + =2$

- Changes in c(0) must be offset against c(-1) or c(+1)
 - How to decide which ?

