Enhancements to Initializati
Procedure

Sept '05 Presentation to Ethernet over Backplane working groti
Joe Abler

IEEE802.3 Ethernet over Backplane

IEEE 802.ap Ethernet over Backplane

Requirements for Initialization

= Procedure needs to be efficient

Minimize initialization time

— Minimize complexity, but allow for flexible implementations
* Hardware, software, or mix

— Minimize cost (silicon area)

= Basic requirements of training pattern

Data content should be random

Initialize FFE to average or nominal conditions, essentially centering it's capability
Swings (pattern extremes) are handled adaptively by DFE

— Data content should cycle through all possible FFE combinations
Spec allows for up to 7 FFE taps
= Basic procedure

— Training pattern is transmitted

— Receiver monitors incoming data, collects statistics to evaluate coefficient updates
Statistics are integrated over a large number of samples, upwards of 1000

— Receiver sends update coefficient update commands to transmitter
— Cycle completes until convergence
|

September 2005

IEEE 802.ap Ethernet over Backplane

Problems with current training pattern definition

= Ratio of control overhead to training pattern is very high

— Becomes very inefficient to cycle through and gather sufficient statistics
= Training pattern has insufficient random content

only a handful of pattern types

— Definition will actually lend normal implementations to get repeated samples of

— Impulse patterns will force FFE well off-center, not where desired
= Training pattern definition drives unnecessary complexity/area
register array

— Most reasonable implementation would be to store pattern in a 64 byte memory or
over Backplane....

Could implement a state machine, area usage would still be high to generate the pattern
— This may be acceptable for traditional Ethernet port interfaces, but this is Ethernet

Consider the total cost in a switch chip with upwards of 100 links!

September 2005

IEEE 802.ap Ethernet over Backplane

Design implications of current training pattern definition

= Sample capture will be relatively slow compared to baud rate

— Consider a hardware implementation running at 160MHz

Currently defined training pattern length would only result in 8 samples per pattern

= Training pattern is found by identifying the marker position

— This implies subsequent iterations of the training cycle will have the same sample
capture points

= Capturing 1000 samples would require 125 iterations of the training cycle

— However the statistics will contain info from only 8 distinct patterns!!
— 10us elapsed time, but 36% of it spent in overhead

— Samples taken only have a 64% likelihood of landing in training pattern period
36 Bytes
Marker

= Software solution would not be realistic with such a definition

Control & Status

Find marker

64 Bytes
Training Pattern

(-

.
Capture samples

[

September 2005

IEEE 802.ap Ethernet over Backplane

Proposed changes to training frame structure

= Change training pattern to a PRBS7 generated stream (entire pattern field)
Provides randomization

— Provides a pattern which will cycle through all FFE pattern combinations
— Simplifies implementation

Most serdes already incorporate this pattern generator

= Lengthen the training pattern period

— Suggest length of 512 octets

— Increases efficiency of training relative to overhead

Enables software approaches

— Capturing 1000 samples would take 6.4us

— Simplifies sampling approach — receiver can “train through” overhead section
No need to search for markers, start, and stop
Small number of samples taken in overhead region are simply integrated into the total

vs. 10us for current approach

September 2005

IEEE 802.ap Ethernet over Backplane

Implications of continuous PRBS7 training pattern

Receiver PRBS checker may have difficulty synchronizing to pattern

This is not a problem per se, checker synchronization is not necessary to
evaluate coefficient update commands

However, to allow the option of a receiver synchronizing to PRBS, the
recommended approach is to reseed the generator each iteration

Reseeding the generator allows receiver to lock to marker and synchronize to
pattern each iteration

Statistics sampler should include logic to vary start of statistic gathering in order to
obtain random samples

This is more reasonable given the increased pattern period

An algorithm not requiring the receiver to synchronize to the pattern can “train
through” the control period

Since Control + Training period is a non-integer multiple of the PRBS7 period, the PRBS
pattern will “slide across” a fixed period sample and provide random samples

A

Control

P2
<

512 Octets: integer multiple of PRBS7
Training Pattern

548 Octets: non-integer multiple of PRBS7

\ 4

A\ 4

September 2005

IEEE 802.ap Ethernet over Backplane

Implications of proposed training format changes

= Handshake process for coefficient updates potentially takes longer?

— Increased time is not necessarily a problem, and could be eliminated

Capturing 1000 samples would still require about 15 iterations with a hardware
implementation, with 15 corresponding overhead fields

Turnaround time of updated request to update status is still a tolerable percentage (about
12% of total)

— Additional round trip time for handshake is about 1us

More than offset by the 3.6us gained in capturing samples
— Updates are now likely to occur in a single cycle

Additional time allows for processing within a single cycle
Therefore it's not an absolute increase in handshake time

= This could be further optimized by training through the handshake

acquiring new samples

— It’s not critical that the receiver know when the Tx has been updated to begin

Integrating a few “old” samples in with the new samples is not a problem

An implementation could use a simple timer delay after update request if it wanted to
eliminate or minimize the number of “old” samples

September 2005

IEEE 802.ap Ethernet over Backplane

Recommended Changes:

= Increase training pattern length to 512 Octets

= Change training pattern to PRBS7

— 1 seed at start of each iteration

8 | September 2005

