Need for 4-Lane 10G Ethernet Backplane Support

Backplane Ethernet Task Force IEEE P802.3ap

Long Beach, CA

May 24 - 27, 2004

Co-Sponsors

Nitish Amin	Vitesse
Uri Elzur	Broadcom
Gopal Hegde	Intel
Ganga Ilango	Intel
David Koenen	HP
David Kruse	Broadcom
Jeff Lynch	IBM
Lee Sendelbach	IBM
Nick van Bavel	Vitesse

<u>Outline</u>

- 1. Current 802.3ap Objectives
- 2. Backplanes Standards Landscape
- 3. 10G Observations
- 4. Backplane Configurations
- 5. 4-Lane 10G Copper Support Today
- 6. Need 4-lane 10G Standard for FR4 Backplanes
- 7. Recommendation

Current IEEE 802.3ap Objectives

- Preserve the 802.3/Ethernet frame format at the MAC Client service interface
- Preserve min. and max. frame size of current 802.3 Std.
- Support existing media independent interfaces
- Support operation over a single lane across 2 connectors over copper traces on improved FR-4 for links consistent with lengths up to at least 1m
 - Define a 1 Gb/s PHY
 - Define a 10 Gb/s PHY
- Consider Auto-negotiation
- Support BER of 10^-12 or better
- Meet CISPR/FCC Class A

[Last Updated March 22, 2004]

Backplane Standards Landscape

- 1G definition is needed now
- 10G Serial support will be needed in the future
- Cost/performance of 10G Serial will eventually come down.
 - In the mean time, to deploy 10G solutions, system vendors must use 4-lane 10G technology
- Blade System Vendors are beginning to develop 4-lane 10G capable Backplanes.
 - Timing is right for adoption
 - Next generation backplanes being designed to accommodate 1G, 4-lane 10G, and Serial 10G
 - Positioned to take advantage of 10G Serial as soon as it becomes competitive from a cost/performance perspective

10G Observations

<u>4-Lane</u>	<u>Serial</u>
More signals & pins on Switch/Blade connectors.	Fewer Signals & Pins on Switch/Blade connectors.
Larger Connector limit's Backplane & Switch form factor options.	Smaller but higher performance connector.
Lower speed connectors are typically denser and lower cost per pin	
Lower cost PCB materials but will require more layers for added signals	PCB material and connector cost higher to support higher frequencies
Core Switch Chips ports limited by package size/pin count.	Core Switch Chips can have lower pin count and package size, but increased power.
Smaller PCB footprint possible due to current ability to integrate 4-lane 10G "XAUI", etc. into MAC/PHY components	Near term, PCB footprint larger due to external XAUI to serial SerDes components (integration further out)

Bottom line: – Both approaches have pro's and con's

- Both approaches MUST be supported

Backplane Configurations

4-Lane 10G Copper Support Today

4-Lane XAUI

4-Lane 10GBase-CX4

There is no standard for transmitting & receiving 10G Ethernet over 20" to 1 meter of enhanced FR4

Need 4-lane 10G Standard for FR4 Backplanes

- Many "DIFFERENT" definitions exist for filling the 20"-1m gap:
 - Extended XAUI
 - Enhanced XAUI
 - CX-4 Lite
 - Pick your favorite vendor and your marketing term
- Technology vendors are developing various preemphasis and receive side equalization schemes
- These schemes are proprietary and in all likelihood will not interoperate
 - Multi-vendor compatibility will be an issue
- System vendors NEED an interoperable 4-Lane 10G standard for up to 1M of enhanced FR4.

Recommendation

- Add support for 4-lane 10G operation to the Backplane objectives:
 - Support operation over copper traces on improved FR-4 for links consistent with lengths up to at least 1m
 - Define a 1 Gb/s PHY
 - Define a 4-Lane 10 Gb/s PHY (3.125 Gb/s per lane)
 - Define a 10 Gb/s PHY