

Making personal broadband a reality[™]

10GBASE-KR Transmitter Compliance Methodology Proposal

Robert Brink

Agere Systems

May 13, 2005

Scope and Purpose

- Deficiencies of existing transmit template compliance methods are discussed.
- A proposal for a new compliance testing method capable of verifying a 10GBASE-KR transmitter is presented.
- Justification for tap range and tap resolution requirements will be presented separately.

Agenda

- Transmitter Compliance Testing Wish List
- Template Testing Discussion
- Equalization Ratio Testing
 - Transmitter model
 - Transmit Equalizer Signal Shaping
 - Transmit Equalizer Solution Space
 - Proposed Specification Methodology
- Conclusions

Transmitter Compliance Testing Wish List

- Simple
 - Easy to implement with existing test equipment
- Repeatable
 - Should test transmitter, not test equipment
- Fast
 - Minimize time required for compliance testing
- Definitive
 - Should clearly identify a compliant transmitter

Template Testing Discussion

- Bounds rise/fall times, jitter (to some extent), over-/ undershoot and ringing, and relative amplitude.
- Bounds a single setting of pre- / de-emphasis (with tolerances).
- Documented as two voltage-time sequences (upper and lower bound).

systems

agere

Template Testing Discussion (continued)

- Difficult to guarantee across all possible process, voltage, and temperature conditions
- Masks are generally relaxed to the point that they become meaningless
 - If mask is tight enough to guarantee a given level of equalization most designs will fail somewhere else
- Susceptible to instrumentation noise, calibration and capability
- Each template specifies only one equalization setting
- Variable transmit equalization will require multiple templates
 - Multiple templates will need to be used in characterization testing
 - Difficult to implement and document
- An algorithmic method may alleviate this problem.

Transmitter Model

- F(z) is the 3-tap transmit FIR
- T is the symbol period
- A is the peak differential output amplitude
- H_t(f) is the transmit pulse shaping filter

$$f_0 = 1 - \left| f_{-1} \right| - \left| f_1 \right|$$

Transmit Equalizer Signal Shaping

 $V_{pre} = A(-f_1 - f_0 + f_{-1})$ $V_{pst} = A(-f_1 + f_0 + f_{-1})$ $V_{ss} = A(f_1 + f_0 + f_{-1})$ $-f_1 + f_0 - f_{-1} = 1$

NOTE: By convention, f_1 and f_{-1} are always negative and f_0 is always positive.

8 May 17, 2005 (r1.3)

IEEE P802.3ap Task Force

agere

Transmit Equalizer Solution Space

IEEE P802.3ap Task Force

Proposed Specification Methodology

Notes

- Use "equalizer off" setting and clause 49 waveform to validate rise time, jitter, and amplitude requirements.
- May also want to check peak-peak output amplitude with 1010... pattern (n = 1).

Transmitter State Definition

- 8-bit encoding
- Pre- and post-cursor values encoded as N x step size (for example, –0.025)

State ₁₀	R _{pre} [dB]		R _{pst} [dB]		R _{pre} [V/V]		R _{pst} [V/V]	
	(min)	(max)	(min)	(max)	(min)	(max)	(min)	(max)
0	-0.6	0.7	-0.6	0.7	0.93	1.08	0.93	1.08
8	-0.7	0.7	-0.2	1.1	0.93	1.08	0.98	1.14
16	-0.7	0.7	0.2	1.6	0.92	1.09	1.03	1.21
24	-0.8	0.8	0.7	2.2	0.92	1.09	1.08	1.28
32	-0.8	0.8	1.2	2.7	0.91	1.10	1.15	1.37
40	-0.9	0.9	1.7	3.3	0.91	1.11	1.22	1.46
48	-0.9	0.9	2.3	4.0	0.90	1.12	1.30	1.58
56	-1.0	1.0	2.9	4.7	0.89	1.13	1.39	1.71
64	-1.1	1.1	3.5	5.4	0.88	1.14	1.50	1.86
72	-1.2	1.2	4.2	6.2	0.88	1.15	1.63	2.05
80	-1.3	1.3	5.0	7.2	0.86	1.17	1.77	2.28
88	-1.4	1.5	5.8	8.2	0.85	1.19	1.95	2.56
96	-1.6	1.7	6.7	9.3	0.83	1.21	2.17	2.93
104	-1.8	1.9	7.7	10.7	0.81	1.25	2.44	3.42
112	-2.1	2.3	8.9	12.3	0.79	1.30	2.79	4.10
120	-2.5	2.8	10.2	14.2	0.75	1.38	3.25	5.13
1	-0.2	1.1	-0.7	0.7	0.98	1.14	0.93	1.08
-								

Proposed Compliance Values

Refer to spreadsheet for a complete list of values.

13 May 17, 2005 (r1.3)

IEEE P802.3ap Task Force

agere

Conclusions

- An algorithmic method for compliance testing the 10GBASE-KR transmit equalizer across settings compatible with the channels of interest is described.
- The described method has the advantages of being algorithmic and therefore easily implemented and documented.

Making personal broadband a reality ${}^{\scriptscriptstyle \mathsf{M}}$

Back-Up

Tolerance Analysis

$$V_{pre} = A(-f_1 - f_0 + f_{-1}) \longrightarrow V_{pre} = A(-1 - 2(f_1 + \Delta f_1))$$
$$V_{pst} = A(-f_1 + f_0 + f_{-1}) \longrightarrow V_{pst} = A(1 + 2(f_{-1} + \Delta f_{-1}))$$
$$V_{ss} = A(f_1 + f_0 + f_{-1}) \longrightarrow V_{ss} = A(1 + 2(f_1 + \Delta f_1) + 2(f_{-1} + \Delta f_{-1}))$$

$$\min(R_{pre}) = \frac{\max(V_{pre})}{\max(V_{ss})} \qquad \max(R_{pst}) = \frac{\max(V_{pst})}{\min(V_{ss})}$$
$$\max(R_{pre}) = \frac{\min(V_{pre})}{\min(V_{ss})} \qquad \min(R_{pst}) = \frac{\min(V_{pst})}{\max(V_{ss})}$$

$$\min(V_{pre}) = A(-1 - 2f_1 - 2|\Delta f_1|) \qquad \min(V_{pst}) = A(1 + 2f_{-1} - 2|\Delta f_{-1}|) \qquad \min(V_{ss}) = A(1 + 2(f_1 + f_{-1}) - 2(|\Delta f_1| + |\Delta f_{-1}|)) \\ \max(V_{pre}) = A(-1 - 2f_1 + 2|\Delta f_1|) \qquad \max(V_{pst}) = A(1 + 2f_{-1} + 2|\Delta f_{-1}|) \qquad \max(V_{ss}) = A(1 + 2(f_1 + f_{-1}) + 2(|\Delta f_1| + |\Delta f_{-1}|))$$

agere

IEEE P802.3ap Task Force