DFE Coefficient Constraints

Andre Szczepanek

Texas Instruments a-szczepanek@ti.com

DFE Coefficient Constraints

IEEE802.3ap Austin May 2005 page 1

Supporters

- XXXX
- XXXX

The Issue

- DFE based receivers have an inherent potential to turn single bit errors into bursts.
 - This will impact error detection coverage of the packet CRC, and the overall MTTPF of the link.
- The probability of error multiplication is highly dependent on DFE tap weight distribution
- We should restrict DFE Tap weights to prevent worst case problems.

S INSTRUMENTS

Burst Errors and Ethernet MTTPF

- The Ethernet CRC is very robust in the presence of single bit errors or noise bursts
 - Guaranteed to detect any 3 bit errors in the frame
 - Guaranteed to detect any 31 bit burst
- In the presence of Gaussian noise Ethernet MTTPF is of order of the lifetime of the Universe
 proportional to (BER)⁻⁴
- DFE error multiplication to >2 bits severely impacts MTTPF
 - CRC is not guaranteed to detect one multiplied error + 1 other error
 - MTTPF proportional to ((probability of error multiplication) * (BER)⁻²)
 - MTTPF is a few years if burst probability = 1% and BER=E⁻¹²
- Unrestricted DFE tap coefficients can easily produce 1% multiplication
 - See hamstra_1_0505

TEXAS INSTRUMENTS

Choosing tap constraints

- This problem has already been worked on in the OIF.
 - Jim Hamstra created a spreadsheet to analyze the probability of DFE error propagation and the compare various constraint methods.
 - Jim's spreadsheet has been submitted to 802.3ap by me as hamstra_1_0505 with Jim's permission.

- His conclusion was
 - Cumulative Exponential Decay is the most stable way to constrain error propagation under a variety of pessimistic conditions. It is stable independent of the total number of taps in the DFE, the distribution of tap weights, and the raw BER of the data link.

Tap Constraint proposal

- Adopt a Cumulative Exponential Decay constraint on tap weights, similar to that in the OIF CEI-2.0 spec.
 - Maximum cumulative weight
 - Y = (1 eye opening)/2
 - Exponential parameters
 - decay factor Z = 2/3,
 - Multiplier factor X = Y
- For any tap *n*, its weight/coefficient W(*n*) is constrained by :
 - $W(n) \le ((1 eye opening)/2) * 2/3^{(n-1)} Sum(W(n+1) + W(n+2) ... + W(m))$

TEXAS INSTRUMENTS