

Making personal broadband a reality[™]

Transmitter Output Waveform Requirements

Adam Healey

Agere Systems

September 12, 2005

Transmit Equalizer Signal Shaping

 $V_{pre} = -c_1 - c_0 + c_{-1}$ $V_{ss} = c_1 + c_0 + c_{-1}$ $V_{pst} = -c_1 + c_0 + c_{-1}$ $V_{pk} = |c_1| + |c_0| + |c_{-1}|$

IEEE P802.3ap Task Force

Transmit Equalizer Requirements

- Differential encoding of transmit equalizer updates (increment, decrement, hold)
- Performance requirements adopted via Motion #10 (Y: 26, N: 0, A: 9) at the May interim meeting (refer to brink_04_0505).

Daramatar	Value		Unito	
Parameter	min	max	Units	
Step Size (∆c)	0.00	2.50	%1	
Tolerance (δ)	-1.25	1.25	%	
Pre-cursor (c ₋₁) range	-17.50	0.00	%	
Post-cursor (c ₁) range	-37.50	0.00	%	
Steady-State Amplitude (V _{ss})	10	100	%	
Peak Amplitude (V _{pk})	400	600	mV _{pd}	

¹ Units are expressed as a percentage of the full-scale amplitude (V_{pk}). The simulations presented in healey_01_0505 assumed a full-scale amplitude of 400 mVpd.

Notes on Requirements

- Requirements derived from MMSE analysis performed on 24 channel data sets provided by Tyco, Intel, and Molex (healey_01_0505)
- For each transmitter equalizer setting, sample phase and 5-tap DFE were optimized to minimize mean-squared error
- Simulations included jitter (but not DCD), crosstalk, and noise
- The performance metric was slicer signal-to-noise ratio
 - Acknowledged as a pessimistic estimate for slicer eye opening
 - However, serves as the basis for the majority of IEEE 802.3 link designs

Test Methodology: Range

agere

Test Methodology: Resolution

Notes on Test Methodology

- Methodology assumes the V_{pk} is kept constant for all transmit equalizer states
 - Defines c₀ for R_{pre} and R_{pst} testing
 - Fundamental assumption behind $D_{\rm pre}$ and $D_{\rm pst}$ definition (the equations no longer hold if $V_{\rm pk}$ is allowed to vary from state to state)
 - Under this assumption, *increment / decrement* operations on c_{-1} affect V_{pst} and vice versa (this is not intuitive, but true per the derivation on slide 14)
- Limits are a mix of ratios and absolute voltages
 - Ratios eliminate dependency on transmitter peak-peak output voltage.

Issues List (1/1)

- V_{pk} is unlikely to be constant for all transmit equalizer states
 - How to set c_0 for R_{pre} and R_{pst} testing?
- With no equalization (c₁ at *maximum* and c₁ at *maximum*), the lower limit of c₀ should need to be no less than 55% (refer to slide 16) of the full scale amplitude.
 - The lower limit is currently set to 100 mV_{pd} when 220 mV_{pd} is all that is required for a 400 mV_{pd} full-scale amplitude

Issues List (2/2)

- D_{pre} and D_{pst} values are not correct
 - Should be $\Delta c(max) + 2\delta(max)$ which is 0.0500 and not 0.0263
 - Must also factor in that V_{pk} may vary from state to state
- D_{main} requirements do not align with other requirements
 - Expressed as an absolute voltage, making percentage a function of the full-scale amplitude
 - Effective step size should not vary from D_{pre} and D_{pst} step sizes
 - 30 mV is appropriate for 600 mV $_{\rm pd}$ full-scale amplitude, 20 mV for 400 mV $_{\rm pd}$ full-scale amplitude
 - It is not clear that c₁ and c₁ are to be held constant as part of this test

Recommended Corrections

- Align specifications to what was adopted at the May interim
- Eliminate the requirement than V_{pk} be kept constant throughout the equalizer test
 - Acknowledge independent control of c₀
- Make test conditions for each requirement abundantly clear
- Note that, from the original requirements for pre- and postcursor range:
 - $R_{pst}(max) = 1/(1-2*0.375) = 4.00$
 - $R_{pre}(max) = 1/(1-2*0.175) = 1.54$

Recommended Requirements

Coefficient Status		Requirements			
C ₁	C ₀	C_1	R _{pre}	R _{pst}	V _{ss}
maximum	minimum	maximum	?	?	[220, 330] mV _d
maximum	maximum	maximum	?	?	[400, 600] mV _d
minimum	minimum	maximum		4.00 (min)	
maximum	minimum	minimum	1.54 (min)		

Coefficient Update		Requirements			
C ₁	C ₀	C_1	$V_{pre}(k)-V_{pre}(k-1)$	$V_{pst}(k) - V_{pst}(k-1)$	$V_{ss}(k)-V_{ss}(k-1)$
increment decrement	hold	hold	(0, 20] mV _d [–20, 0) mV _d		
hold	increment decrement	hold		(0, 20] mV _d [–20, 0) mV _d	
hold	hold	increment decrement			(0, 20] mV _d [–20, 0) mV _d

- Any decrement update applied to any tap that results in $\rm V_{ss}$ < 40 $\rm mV_{d}$ shall return status minimum
- For all equalizer configurations, the sum $V_{pst} V_{pre} V_{ss}$ shall be no greater than 600 mV_d

Implications of Proposed Requirements

- Continue to employ the waveform decomposition methodology in 72.6.1.11
- Eliminate the current D_{pre} and D_{pst} definitions and replace them with simple voltage differences
- Differential output voltage limits are covered by the tables on the preceding page, and additional definitions, including those in 72.6.1.4, are redundant

Making personal broadband a reality ${}^{\scriptscriptstyle \mathsf{M}}$

Back-Up

D_{pre} and **D**_{pst} **Derivation**

systems

agere

D_{main} **Derivation**

- For each value of c₀, c₋₁ and c₁, remain constant (i.e. V_{pk} is not constant)
- Assume $c_0(k) = k\Delta c$

 $|V_{ss}(k) - V_{ss}(k-1)| = |(c_1 + k\Delta c + c_{-1}) - (c_1 + (k-1)\Delta c + c_{-1})| = \Delta c = D_{main}$

V_{ss} Limits Derivation

- Assume that V_{ss} needs to be no less than 10% of the fullscale amplitude (V_{pk})
- Assume $c_{-1} \leq 0$ and $c_1 \leq 0$
 - $|c_{-1}| = -c_{-1}$ and $|c_1| = -c_1$

Making personal broadband a reality ${}^{{}^{\rm T\!M}}$

Updates to Requirements

Recommended Requirements (1/2)

Coefficient Status		Requirements			
C ₁	C ₀	C _{_1}	R _{pre}	R _{pst}	V _{ss}
maximum	minimum	maximum	[0.90, 1.10]	[0.90, 1.10]	[220, 330] mV _d
maximum	maximum	maximum	[0.95, 1.05]	[0.95, 1.05]	[400, 600] mV _d
minimum	minimum	maximum		4.00 (min)	
maximum	minimum	minimum	1.54 (min)		

Coefficient Update		Requirements			
C ₁	C ₀	C_1	$V_{pst}(k)-V_{pst}(k-1)$	$V_{ss}(k)-V_{ss}(k-1)$	$V_{pre}(k)-V_{pre}(k-1)$
increment decrement	hold1	hold	[5, 20] mV _d [–20, –5] mV _d	[–5, 5]² mV _d	[–5, 5] mV _d
hold	increment decrement	hold	[–5, 5] mV _d	[5, 20] mV _d [–20, –5] mV _d	[–5, 5] mV _d
hold	hold	increment decrement	[–5, 5] mV _d	[–5, 5] mV _d	[5, 20] mV _d [–20, –5] mV _d

1 Step size requirements to the tap under test shall apply regardless of the current value of the other two taps

2 Difference is measured relative to the value of the coefficient prior to assertion of the hold request

Recommended Requirements (2/2)

- For all equalizer configurations, V_{ss} shall be no less than 40 mV_d
- Any *decrement* update applied to any tap that results in V_{ss} < 40 mV_d shall return status *minimum*
- For all equalizer configurations, the sum $V_{\text{pst}}-V_{\text{pre}}-V_{\text{ss}}$ shall be no greater than 600 mV_{d}
- Any *decrement* update applied to c_{-1} or c_1 that results in V_{pk} greater than or equal to 600 mV_d shall return status *minimum*
- Any *increment* update applied to c_0 that results in V_{pk} greater than or equal to 600 mV_d shall return status *maximum*

Notes on Recommended Requirements

- Bounds applied to the change of held coefficients is based on $\pm \delta$
- Lower bound applied to coefficient step size is based on δ
- Range of R_{pre} and R_{pst} for max/min/max and max/max/max test cases based on c_{-1} and c_1 range of <u>+</u> δ and $c_0 = min(V_{ss})$