

IEEE 802.3 Backplane Signaling Specification

J Stonick Synopsys

Overview

- Need to develop a methodology for selecting "fair" set of channel models to compare signaling approaches. Two parts are involved:
 - Channel selection
 - S21
 - Xtalk (FEXT and/or NEXT)
 - Comparison criterion
 - Compare apples to apples
 - Uniform report

Channel Selection: S21

- Model based approach often does not lead to truly realistic environment
 - Misses any reflections and interactions between reflections
- Need more than a mask
 - Unrealizable channels often fit within mask
 - Mask decides what can't be, not what can be
- Single measured trace is too limited
 - For any signaling approach I can pick a measured channel (or modeled) channel to make it win

Channel Selection: S21

- Need an ensemble of measured channels from a little worse than the mask to well above mask but with significant ripple
 - With 6 to 10 channels selected no method should find unfair favoritism (hopefully the best approach will shine)
 - Channel selection must be agreed upon by the group (blessed by channel ad hoc?)
 - Includes real interactions between loss and group delay ripple under a variety of conditions – trying to run corners across S-parameters

XTALK Selection

- Same as S21, need an ensemble of measured channels, but these should all be near edge of mask (less xtalk is always easier), thus fewer is probably OK.
 - Since only bad XTALK need be considered probably 2 to 4 measured responses is adequate (1 or 2 NEXT, 1 or 2 FEXT)
- How to include XTALK degradation in simulation? (2 ideas)
 - Run XTALK asynchronous to S21 so guarantee periodic worst case alignment. May not get worst case alignment. Needs long simulations.
 - Simulate each XTALK source independently (as seen by slicer), create a PDF for each XTALK source, convolve sources together (assumes independent sources, tail captures worst case alignment), statistically use this during SNR or BER simulation/computation.

Comparison Criterion Basic Thoughts

- Pure simulation for BER
 - Confidence intervals? (Not easy for non-Gaussian disturbance)
 - Repeatability? Good result = good seed?
 - BER is so low, long simulation times
- SNR
 - Different signaling methods need different amounts of SNR for a given BER, hard to agree on fair comparison
- Margin
 - How much disturbance can you add to hit a fixed (fairly high) BER
 - Shorter sims since BER is higher
 - Use DC disturbance so there is not a dependence on random nature of margining disturbance
 - Time offset from best timing spot
 - Voltage offset on slicer
 - Provides inherent sensitivity analysis beyond just a BER
- Recommend NOT including adaptation or CDR in comparison simulations, muddles basic issue
 - Do not want to pick a worse basic solution because of a better (proprietary) CDR or secret sauce in the adaptation

SYNOPSYS

Set timing to "best" spot, set coefficients (infinite precision) to "best" values

