Comment to editor — 1 understand the motive to save space, but | strongly believe this reads much more easily
with spaces between sections, at least until we’re into Sponsor ballot. 1 have proposed spaces below, although
another option is to revert to the spacing submitted with the original code. This is your option, however.

Tom

%%%%%%% MATLAB (R) script to compute TWDP %%%%%%%%%%%%%%%%%%%%%%
%% TP-2 test inputs
%% Units for all optical power values must match.

%% Transmit data file: Jhe transmit data sequence is based on either of the TWDP test patterns defined in

%% Table 68-5, The flle format is a single column of chronological ones and zeros with no headers or footers.

TxDataFile = B ath\datafilename*;

ce yiust be
%% measured waveform |s a single column of chronological numerical samples in optical power, with no headers

%h or footers,

MeasuredWaveformFile = “path\waveformfilenamg,’ 5

%% OMA and steady-state ZERO power must also be specified.

MeasuredOMA = JOMAvalue]; % Measured OMA, in optical power
SteadyZeroPower [ZEROvalue];
OverSampleRate 16;

FiberResp = load(*" flber case.txt")

vCoefs = Fibe [R§§P,(-,L 2 L ________
Delays = FiberResp(:, 1);

%% Editor’s note — These are static parameters that should not change once test is fully specified %% _ ____ _
SymbolPeriod = 1/(10.3125); % Symbol period (ns)

EFilterBW = 7.5; % Front end filter bandwidth (GHz)

EgNF = 100; % Number of feedforward equalizer taps

EgNb = 50; % Number of feedback equalizer taps

EqDel = ceil(EqgNf/2); % Equalizer delay

PAlloc = 6.5; % Allocated dispersion penalty (dBo)

Q0 = 7.03; % BER = 107(-12)

%% STEP 1 - Process waveform through simulated fiber channel %%%%%%%%%%%%%%%%%%%
%% Load input waveforms

XmitData = load(TxDataFile);

yout load(MeasuredWaveformFile);

LtrnLength Iength(XmitData);

TotLen

Fgrid

%% Process through flber model Flber frequency response is normallzed to 1 at DC
ExpArg = —j*2*pi*Fgrid;

Hsys = exp(ExpArg * Delays®") * PCoefs;

Hx = Fftshift(Hsys/abs(Hsys(find(Fgrid==0))));
yout = real (ifft(fFft(yout).*Hx));

%% STEP 2 - Normalize OMA%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
yout = (yout - SteadyZeroPower)/MeasuredOMA;

%% STEP 3 - Process signal through front-end antialiasing filter %%%%%%%%%%%%%%%%%%
%% Compute frequency response of front-end Butterworth filter

[b,a] = butter(4, 2*pi*EFilterBW,"s");

H.r = fregs(b,a,2*pi*Fgrid);

%% Process signal through front-end filter

yout = real (ifft(fft(yout) .* fftshift(H_r)));

%% STEP 4 - Sample at rate 2/T %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
yout = yout(l:OverSampleRate/2:end);

%% STEP 5 - Compute MMSE-DFE %9%%%%%%%%%%%%%%%%%%%%%%6%%%%%%%%%%
%% The MMSE-DFE filter coefficients computed below minimize mean-squared error at the slicer input.
%% The derivation follows from the fact that the slicer input over one period (which is the same as the

[T
N\\

Deleted: (In the case
used here, t

Deleted: derived from a
’| PRBS9 dataf

;| %% sequence generated

by polynomial
x"9+xM+1. (That is,
the data sequence d(n)
is given by

%% d(n)=d(n-9)+d(n-4),
mod 2.) The sequence is
initially aligned so
that it starts with 9
ones. A zerof

%% is inserted
immediately after the

\

\ﬁ“\\\ string of eight zer | 1]
1
\\ \\\\ W {Deleted TxData.txt]
"
ﬂ;\o“\\\ {Deleted The current o1
J Al ... 31
\‘ \\\ Deleted:
e)
wﬂwﬂW{Daemd:]
\
.. [4]

N‘Wl
H\«”
\
wﬂ
H
\x
\
%n
W
N

i
N

)
v

I
H“

(!
M

[
i
[
[
v
iy
|
\[
iy
iy
iy
i
i
i
g
[
[
[
o
i
i
[
[
[

74‘\

Deleted: (For the

\\

L

\
\ .
‘\\\\\ Deleted: 1 .. [5]
“ Deleted: above has been
\
bt || Deleted:
W \\
\«\\\ Deleted:)
i\
\ .
| Deleted: OMA and ste _[6]
\ “ Deleted: GO5.tx]
1
\\“\ Deleted: t]
\u“ Deleted: % Measured™ 7]

Deleted: 3.8e-004

Deleted: 3.2e-004

Deleted: |

—

8

\

\'| Deleted:

Deleted:

\
U

'l Deleted:

'l Deleted: T

'| Deleted: FiberResp [20]

Deleted: S

Deleted: WWMWHHH Ti1]

oL B (LB

Deleted:

\\\ Deleted: |

Inserted: 1

Deleted: PRBSlength

Deleted: PRBSlength

Deleted: PRBSlength

o U

%% period of the input data sequence) can be expressed as Z = (R*tN)*W - X*[0 B]", where R and N are

%% Toeplitz matrices constructed from the signal and noise components, respectively, at the sampled out

%% put of the antialiasing filter, W is the feedforward filter, X is a Toeplitz matrix constructed from the
%% input data sequence, and B is the feedback filter. The optimal W and B minimize E[]|Z-XIn]||"2], where

%% XIn is the input data sequence, and the expectation operator refers to the Gaussian noise component of
%% Z. Compute the noise autocorrelation sequence at the output of the front-end filter and rate-2/T sampler.
%% Constuct a Toeplitz autocorrelation matrix.

NO = SymbolPeriod/(2 * Q0”2 * 10"N(2*PAlloc/10));

snn = N0/2 * fftshift(abs(H_r).~2) * 1/SymbolPeriod * OverSampleRate;
Rnn = real (ifft(Snn));

Corr = Rnn(1:0OverSampleRate/2:end);

C toeplitz(Corr(1:EqNF));
%% Construct Toeplitz matrix from input data sequence
= toeplitz(XmitData, [XmitData(l); XmitData(end:-1l:end-EqNb+1)]);
%% Construct Toeplitz matrix from signal at output of 2/T sampler.
%% This sequence gets wrapped by equalizer delay

R = toeplitz(yout, [yout(l); yout(end:-1l:end-EqNf+2)]);

R = [R(EqDel+1:end,:); R(1:EqDel,:)];

R = R(1:2:end, :);

%% Compute least-squares solution for filter coefficients

RINV = inv(R**R+#PtrnLength*Cc); R .

P = X"*(eye(@trnlengthy - RFRINVFR*Y*X: T T i { Deteted: prestengtn
P01 = P(1,2:EqNb+1); o ‘[Deleted: PRBSlength
P11~ = P(2:EqgNb+1,2:EqNb+1);

B = -inv(P11)*P01~; % Feedback filter

w = RINV*R*"*X*[1;B]; % Feedforward filter

z = R*W - X*[0;B]; % Input to slicer

%% STEP 6 - Compute BER using semi-analytic method %%%%%%%%%%%%%%%%%%%%%%

MseGaussian = W"*C*W;

Ber = sum(0.5*erfc((abs(Z-0.5)/sgrt(MseGaussian))/sqrt(2)))/length(2);

%% STEP 7 - Compute equivalent SNR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% This function computes the inverse of the Gaussian error probability function. The built-in Matlab
%% function erfcinv() is not sensitive enough for the low probability of error case.

Q = inf;

if Ber>10"(-12) Q
elseif Ber>10"(-300) Q
end

sgrt(2)*erfinv(1-2*Ber);
2.1143*(-1.0658-10910(Ber)).”0.5024;

%% STEP 8 - Compute penalty %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
RefSNR = 10 * 1og10(Q0) + PAlloc;
fprintf(1,"TP2 penalty equals %5.4Ff dB\n", RefSNR-10*10g10(Q));

Page 1: [1] Deleted Tom Lindsay 24/02/2005 6:15 PM
derived from a PRBS9 data
%% sequence generated by polynomial x"9+x"4+1. (That is, the data sequence d(n) is
given by
%% d(n)=d(n-9)+d(n-4), mod 2.) The sequence is initially aligned so that it starts
with 9 ones. A zero
%% is inserted immediately after the string of eight zeros in the sequence. 2 bits are
inverted at location 391
%% and 392. The resulting data sequence is inverted. Then the entire sequence is
circularly right-shifted
%% 476 bits to align with the measured waveform specified below.)

Page 1: [2] Deleted Tom Lindsay 24/02/2005 6:18 PM
The current waveform is for demonstration purposes only.

Page 1: [3] Deleted Tom Lindsay 24/02/2005 6:27 PM
%%

Page 1: [4] Deleted Tom Lindsay 24/02/2005 6:19 PM

(For the PRBS9 case used
%% here, the oversampling rate is 16 and the waveform consists of 512*16 = 8192
samples.

Page 1: [5] Deleted Tom Lindsay 24/02/2005 6:27 PM

%%

Page 1: [6] Deleted Tom Lindsay 24/02/2005 6:21 PM
OMA and steady-state ZERO power
%% must also be specified.

Page 1: [7] Deleted Tom Lindsay 24/02/2005 6:22 PM

% Measured waveform samples, in optical power

Page 1: [8] Deleted Tom Lindsay 24/02/2005 6:35 PM
%%

Page 1: [9] Deleted Tom Lindsay 24/02/2005 6:30 PM
%%

Page 1: [10] Deleted Tom Lindsay 24/02/2005 6:28 PM

FiberResp = [--.
0.000000 0.65 0.88 0.51
0.072727 0.5 0.58 0.89
0.145455 0.91 0.89 0.29
0.218182 0.26 0.1 0.81];

Page 1: [11] Deleted Tom Lindsay 24/02/2005 6:40 PM
%6%%%%%%%%%%%%%%%%

