NRZ EDC Proposal for 10GBASE-LRM

Presented by Michael Lawton, Agilent Technologies 14 July 2004

Contributions and Support from:

Lars Thon **Piers Dawe, Michael Lawton Keith Conroy** John Jaeger, Jonathan King, Tricia Hill, Sudeep Bhoja Andre Van Schvndel Ali Ghiasi Tom Lindsay, Norm Swenson, Paul Voois **Steve Swanson Ryan Latchman, Judith Meester** Lew Aronson John Ewen, Wenbin Jiang Petar Pepeljugoski Jens Fiedler, Stefano Bottacchi Bob Zona, Jan Peeters Weem, Martin Lobel, Henrik Johansen Jesper Hanberg, Pete Kirkpatrick **Dimitry Taich** Mike Fukatsu, David Jenkins, Kirk Bovill Yi Sun Nick Weiner, Chet Babla, Ben Wilcocks Petre Popescu Abhijit Shanbhag Paul Kolesar **Bill Ring** Kevin Witt, Badri Gomatam **Tom Palkert** Hank Blauvelt

Aeluros Agilent AMCC **Big Bear Bookham Broadcom ClariPhy** Corning Gennum Finisar JDSU **IBM** Infineon Intel **Mysticom** OCP **OFS Phyworks** Quake **Scintera Systimax** Tyco Vitesse Xilinx **Xponent Photonics**

Summary

- Motivation for an NRZ EDC proposal
 - Vendor support, technical feasibility, broadest implementation scope (source, launch, cheap electronics), timing
- Highlighted areas within the specification proposal:-
 - Parameters we can agree on today
 - Comparison with 10GBASE-LR (differences in blue)
 - Parameters in tables which warrant further study (shown in red)
 - Comments on implementation scope of the specification
 - Compliance testing strategy
- Draft Proposal Document also submitted.

cost

Component	Availability
10G NRZ Laser Driver	Now
10G capable laser	Now
10G capable PIN	Now
10G EDC chip	2004
10G CDR	Now

• Full suite of building blocks should be available by end of 2004

Specification

- Fiber types
- Transmitter characteristics
- Link Budget
- Receiver characteristics
- Compliance testing ... to be further addressed by Lew Aronson
- Areas for further study
- Conclusions

10GBASE-LRM Operating Range over each Fiber Type

Fiber Type	Modal bandwidth@ 1300nm	Operating		
	min. overfilled launch (MHz.km)			
62.5μm MMF	160/500 and 200/500	0.5 to 220		
50μm MMF	400/500 and 500/500	0.5 to 220		
50μm MMF	selected MMF (1500/500)	0.5 to 300		

- 0.5m minimum range supports loop back testing
- Fiber type for 300m operation not defined

Transmitter Parameters (TP2)

Description	Туре	10GBASE-LR	10GBASE-LRM	Unit
Signaling speed	Nominal	10.3125	10.3125	GBd
Signaling speed variation from nominal	max	+/- 100	+/- 100	ppm
Center wavelength	Range	1260 to 1355	1260 to 1355	nm
RMS spectral width	max	NA	5	nm
Average launch power	max	0.5	0.5	dBm
Average launch power (informative)	min	-8.2	-7.5	dBm
Optical modulation amplitude	max		1.5	dBm
Optical modulation amplitude	min	-5.2	-4.5	dBm
Launch power of OFF transmitter	max	-30	-30	dBm
Extinction ratio	min	3.5	3.5	dB
RIN ₁₂ OMA	max	-128	-128	dB/Hz
Optical return loss tolerance	max	12	12	dB
Transmitter reflectance	max	-12	-12	dB
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3})		{0.25, 0.40, 0.25, 0.28, 0.4}	{0.25, 0.40, 0.25, 0.28, 0.4}*	
Encircled flux test for 50µm fiber		NA	>86% in 19µm radius <30% in 4.5µm radius	
Encircled flux test for $62.5\mu m$ fiber		NA	>86% in 24µm radius <30% in 4.5µm radius	

* Relaxed eye mask TBD (subject of further study)

Are there any Tx impairments that have not yet been captured? NRZ EDC Proposal July 2004

Scope of implementation ...

Description		Туре	10GBASE- LR	10GBASE-LRM	Unit
Signaling speed		Nominal	10.3125	10.3125	GBd
Signaling speed variation from n	ominal	max	+/- 100	+/- 100	ppm
Center wavelength		Range	1260 to 1355	1260 to 1355	nm
RMS spectral width		max	NA	5	nm
Average launch power		max	0.5	0.5	dBm
Average launch power (informat	ive)	min	-8.2	sunn	orts
Optical modulation amplitude		max		Supports	
Optical modulation amplitude		min	-5.2	DFB/FP/	CSEL
Launch power of OFF transmitte	relaxed	eye	-30	-30	asm
Extinction ratio	more in O		3.5	3.5	dB
RIN ₁₂ OMA	margin	f	-128	-128	ow cost
Optical return loss tolerance		max	18	12	
Transmitter reflectance		max	-12	-12	launch?
Transmitter eye mask definitio Y1, Y2, Y3})	on {X1, X2, X3,		{0.25, 0.40, 0.25, 0.28, 0.4}	{0.25, 0.40, 0.25, 0.28, 0.4} relaxed tbd	
Encircled flux test for $50\mu m$ fiber			NA	>86% in 19µm radius <30% in 4.5µm radius	
Encircled flux test for $62.5\mu m$ fiber			NA	>86% in 24µm raisus <30% in 4.5µm radius	

10GBASE-LRM Transmitter Power Window

TP2 power map

• Similar window to 10GBASE-LR (TDP=1.7dB)

Link Power Budget for 220m (informative)

Parameter	Value	Units	
Connector losses	2.0	dB	
Fiber attenuation (220m)	0.4	dB	
Modal noise penalty	0.5	dB	Built into
RIN penalty	0.4	dB	stressed Rx test
Rx Dynamic Adaptation Penalty	0.5	dB 🔻	
Consequent Penalty	0.2	dB	captured in an
Total	4.0	dB	individual test

- Link budget is very different for 10GBASE-LRM
- Dispersion allowance is not part of the 10GBASE-LRM link budget
 - Receiver specification and compliance testing determine the required dispersion performance

Interpreting the EDC Link Budget (OMA)

TP3 Conformance Testing 10GBASE-LR ...

Figure 53–10-Receive jitter test block diagram

• Diagram taken from 802.3ae

TP3 Conformance Testing 10GBASE-LRM ...

- Diagram taken from presentation to be given by Lew Aronson
- Approach is similar to 10GBASE-LR with additional stress terms:-
 - Emulates ISI, Modal noise, RIN

NRZ EDC Proposal July 2004

Receiver parameters (TP3)

Parameter	Туре	10GBASE-LR	10GBASE-LRM	Units
Nominal signalling speed	nominal	10.3125	10.3125	GBd
Signalling speed variation from nominal	max	+/-100	+/-100	ppm
Center wavelength	range	1260 to 1355	1260 to 1355	nm
Average receive power	max	0.5	0.5	dBm
Received OMA	max		+1.5	dBm
Average receive power (informative)	min	-14.4	-9.9	dBm
Receiver sensitivity in OMA (informative)	max	-12.6	NA	dBm
Receiver sensitivity with ISI only in OMA	max	NA	???	dBm
(Static) Stressed receiver sensitivity in OMA (with ISI and sinusoidal jitter and noise applied)	max	-10.3	-7.6 (TBC)	dBm
Dynamic adaptation penalty	max		0.5	dB
Vertical eye closure penalty	min	2.2	Not used	dB
3dB electrical bandwidth	max	12.3	?	GHz

Areas for further study ...

- Transmitter
 - Eye mask specification
 - Determine launch test definition and limits
 - Extinction ratio
- Link budget
 - Agree dynamic adaptation penalty
 - Validate equalization penalties with channel model work
- Receiver
 - Define stressed test and limits
 - Receiver compliance testing to be addressed in a presentation by Lew Aronson

Conclusions

- NRZ EDC standardization progress:-
 - Demonstrated strong technical feasibility
 - Presented draft specification with broad scope for implementation
 - Transmitter is well defined with only two open issues:-
 - launch test
 - Relaxed Eye mask margin test
 - The link budget is defined (detailed validation required)
 - based on low mode dependent loss and resulting low modal noise penalty
 - Well considered proposals presented for conformance testing
 - Progress in line with standardization milestones
- Hardware progress supports timely product development

Motion 8

 Move that the 802.3aq task force adopt the NRZ EDC based proposal (lawton_01_0704) all of diagrams on page 10, 11 & 13 in aronson_2_0704 as the basis for on-going committee tasks in order to focus & progress the work towards a draft standard as modified according to the notes 1 and 2 below

Note 1: this motion does not change the draft TF timeline nor does it preclude new proposals from being brought forward in the September interim. It does direct the task force to work on key areas of the NRZ EDC proposal.

Note 2: All the table entries in lawton_01_0704 in red & all of diagrams from pgs 10, 11 & 13 in aronson_2_0704 shall be considered and identifed as 'TBD', with a corresponding Editors note based upon the placeholder value to be considered by the value/parameter in red

Moved: Mike Lawton Second: Pete Hallemeier

Y/N/A 59/0/2

Motion 8 Motivation

- Motivation:
 - As of the 7/04 Portland meeting, the task force has a single multi-company proposal under consideration
 - There are a number of key work items which would better progressed as part of the larger Task Force
 - Similar to the activities of the Channel Ad-hoc
 - The best opportunity to progress the efforts towards the draft timeline will be through a focused Task Force effort on a path which can achieve 75% support
- Potential example 802.3aq tasks to get to a D1.0:
 - TP2 related items: conditioned launch, eye mask, TDP, ...
 - TP3 related items: stressed Rx sensitivity test, Dynamic Adaptation Test, Informative Rx Sensitivity, ...
- <u>Why we can make forward progress now:</u>
 - NRZ EDC viability based upon numerous simulation & experimental data
 - Cambridge Worst Case model, 802.3z MBI data set, 'Worst Case SX' fiber, '12/96 Modal BW Demo' fiber, '10GbE Demo Cable' fiber,... - most at 300m lengths
 - Several metrics under consideration all with margin to the straw-man budget
 - If/when a the channel model is revised with the associated statistics, easy to evaluate the impact on the link budget

Items in red ...

- Definition of MMF for 300m
- Tx
 - Eye mask specification
 - Launch test
 - Extinction ratio
 - Additional Tx impairments
- Link Budget
 - ISI Adaptation penalty
- Rx
 - Static Rx stressed test
 - Dynamic Rx stressed test
 - Normative Rx sensitivity (in presence of ISI) test

TP3- Normative (Static) Stressed Sensitivity Test (page 10 aronson_02_0704)

Goals:

Clock Source

Simplest Test Which Adequately Stresses EDC – Start Really Simple!

Reuse as Much 10GBASE- LR Stressed RX Test Hardware As Practical

Avoid User Tradeoff Choices Allowed in -LR Stressed Test

Proposed Parameters (to be included in 10GBASE-LRM receive characteristics table)

2 Peak Impulse Response.

 $A_{1}/A_{1} \sim 1.5$ (?)

At Chosen to Yield Target Figure or Merit (Based on Allocated EDC Link Penalty) and Representative of DMD span of channel model

Choose One Sinusoidal Jitter Frequency and Amplitude from the 10GBASE-LR Mask

E/O Converter Provides Linear Response and 3.5 dB ER Output

TP3- Adaptation Speed Test (page 11 aronson_02_0704)

Goals:

Simplest Test to Establish Adequate EDC Adaptation Speed

- Decouple from Stressed RX Test, Do not Include SJ and Amplitude Noise
- Likely Used Only in IC Development and XCVR Design Verification, But Still Normative

Choose Minimum OMA and Test for < 1e-12 BER Over Minimum ISI Cycle

Is an Initialization Time Spec / Test Needed or is it Implicit in Form Factor MSAs

Probably needed but outside scope of IEEE specification

Shift Power Sinusoidally and Completely Between A₁ and A₂ But Retain A Larger Fixed Peak Specify Adaptation Rate in Receive Characteristics Table

Rate of Oscillation Cycle Between A₁ and A₂

Chosen using Measurement Experiments on Time Variation of Perturbed Fiber Link

Measure Penalty for Dynamic (At Specified Test Rate) vs Static ISI

Static case probably being the worst specific ISI case in the dynamic cycle, OR

Same much slower (1000x?) rate

Parameters included in 10GBASE-LRM Receive Characteristics Table.

NRZ EDC Proposal July 2004

TP3- Simple Informative Sensitivity Test (page 13 aronson_02_0704)

Goals:

EDC Relevant Test Equivalent to Informative Basic Sensitivity Test in 802.3ae

Low Noise, No SJ Signal with Simple ISI Block

Provide Simplest Test For Use in Day-to-Day Measurements Such as Manufacturing

Option 1 - Simplest:

Need to Calculate Required Informative Sensitivity for Receive Characteristics Table

Not a Clear Way to Do So, Requires Further Study