

MMF Reach Extension for 10 Gbps by Spatially Resolved Equalization

Ketan M. Patel, <u>Stephen E. Ralph</u> stephen.ralph@ece.gatech.edu

Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta, GA

Spatially resolved equalization

- Multi-segmented photodetector (MSD) for spatially resolved equalization
 - Simple two-segment is effective and robust
- Exploits spatial diversity to retain "information" that is lost by conventional PD
 - > Low-ordered modes (LOM) exclusive to inner PD
 - > High-ordered modes (HOM) incident on inner and outer PD
- Electronically equalizes fiber response based on optical properties of mode in graded-index MMF
 - Variation in mode size allows partial mode separation
 - Subtraction of photocurrents reduces HOM energy
- Transmission format independent permitting additional electronic signal processing
 - SRE and FFE/DFE work synergistically
 - > Mixed signal and other transmission formats allowed

Diversity in output irradiance

- Spatially resolved impulse response of irradiance
 - > Measured of a 50- μ m, 1.1-km MMF with 1550-nm optical pulse
 - Temporal response of irradiance scanned with 15-μm pinhole aperture at distance 400 μm from fiber output
 - > HOM lags LOM in MMF at 1550-nm

Georgia Institute of Technology/Georgia Electronic Design Center

Implementation of SRE

- Embodiment of simplified SRE
 - > Subtraction of PD photocurrents by differential receiver
 - > Inner PD radius specifies MSD size (outer PD assumed to be semi-infinite)
- SRE not limited to MSM-based detector
 - MSM-based photodetector used for ease-of-fabrication
 - > SRE viable with p-i-n based detector

Georgia Institute of Technology/Georgia Electronic Design Center

Linear, multipath fiber model

- DMD-limited graded-index MMF
 - Ideal α-profile MMF
 - no profile defect
 - Includes profile dispersion
- Fiber mode characteristics
 - Group delay (via WKB method^[1]) only
 - No chromatic dispersion
 - No mode dependent attenuation
 - Mode-field profile
 - Scalar wave equation solver

- VCSEL emulation
 - > 5 transverse mode source
 - Weakly guiding circular waveguide
 - Random rotational orientation
 - Equal power among modes
 - Asymmetrized about fiber axis
 - Meets EF launch criteria
- Multi-segmented photodetector
 - Ideal, uniform square-law detectors
 - > Beam propagation out of fiber included
 - > 100% photo-collection

٠

^[1] R. Olshansky and D. B. Keck, "Pulse broadening in graded-index optical fibers," *Appl. Opt.*, vol. 15, pp. 483-491, Feb 1976.

Mode size versus group delay

- Radius of 50% encircled-flux
- Near monotonic relationship allows simple subtraction of PD photocurrents for significant equalization

- Outer PD preferentially detects HOM
 - Slight bimodal response due to difference between azimuthal and meridional modes
 - HOM-based ISI is subtracted from inner PD signal
 - SRE = Inner PD − Outer PD
 - > Improvement on bandwidth
 - Alternative view: receive-side
 "enforcement" of EF launch condition

•

Simulated MMF link with SRE

- HOM leads to improvement in the frequency response
- 2x shift in 3-dB BW; shift in frequency nulls; reduction of null depth
 - 6-dB atten. at DC is equivalent to 3-dB optical power penalty
- MSD can be optimized for different launch condition or different bandwidth gain

- 850-nm EF launch condition
 - Asymmetrized: 2-µm offset, 2° tilt
 - MSD size optimized specifically for 2x with launch condition
- Suppression of ISI energy
 - > ISI in HOM which lead LOM at 850 nm
 - *h_{fnr}(t)* and *h_{otr}(t)* are impulse response observed by each PD segment

Measurement impulse response

- HOM leads to improvement in the frequency response
- 2x shift in 3-dB BW, shift in frequency nulls, reduction of null depth
 - 6-dB atten. at DC is equivalent to 3-dB optical power penalty

- Measurement with 810-nm impulse source in 1.1-km MMF
 - Multimode launch created with mode-scrambler (overfilled launch)
- All impulse responses measured with same MSD detector
 - > Device configured with bias polarity
- MSD is 55-μm detector at 400 μm from fiber output
 - > Optimized for given launch condition

Georgia Institute of Technology/Georgia Electronic Design Center

Simulation at longer wavelengths

- Using EFL launch condition for 1300 and 1550 nm
 - Anticipating use of multimode VCSEL at longer wavelengths
 - Same asymmetric fiber illumination
- Same MSD size used in simulation
 - > MSD can be optimized for different launch condition (*e.g.* singlemode VCSEL)
- Desired bandwidth gain of 2x is achieved independent of wavelength
 - > Regardless of HOM arrival time, HOM energy is suppressed

Georgia Institute of Technology/Georgia Electronic Design Center

Measurement at long wavelength

- Measurement with 1550-nm impulse source in 1.1-km MMF
 - Multimode launch created with mode-scrambler (overfilled launch)
- No change in MSD
 - 55-μm detector at 400 μm from fiber output
 - Diffraction of beam highly dependent on numerical aperture of fiber

- Equalization independent of wavelength
- Equalization independent of magnitude or "direction" of DMD

Georgia Institute of Technology/Georgia Electronic Design Center

Optimization of MSD

- Bandwidth gain by SRE not limited to 2x
 - > 2x bandwidth chosen as trade-off between ISI mitigation and optical penalty
- Trade-off controlled by MSD-fiber gap or MSD radius
 - \succ Sweep of inner PD radius: 5 to 100 μm
 - > Sweep of MSD-fiber gap: 0 to 500 μ m

Georgia Institute of Technology/Georgia Electronic Design Center

Robustness to fiber design

- Intended BW gain is achieved over range of α
 - > MSD optimized specifically for 2x bandwidth gain at $\alpha = 2$
 - > Bandwidth enhancement is not sensitive to variation in index profile design
 - *i.e.* fiber optimized for 850 or 1300 nm
 - Only near optimal bandwidth is BW enhancement by SRE limited
 - Monotonic relationship between group delay and mode size fails
 - Second-ordered effect of group delay to mode number dominates
- Sweep α over extreme range
 - y = 0.1 assumed (@ 850 nm) ^[1]
 - Chromatic dispersion NOT included

^[1] R. Olshansky and D. B. Keck, "Pulse broadening in graded-index optical fibers," *Appl. Opt.*, vol. 15, pp. 483-491, Feb 1976.

Georgia Institute of Technology/Georgia Electronic Design Center

Monte Carlo simulation

- Monte Carlo simulation varying ٠ symmetry on EF launch condition
 - VCSEL offset: $\sigma = 5\mu m$ \geq
 - VCSEL tilt: $\sigma = 2^{\circ}$ \triangleright
 - Relative modal power: $\sigma = 10\%$ >
 - 5000 trial \triangleright
 - No change to fiber or MSD \geq
- Mean BW improves 2x ۲
 - MSD optimized specifically to \succ achieved this result given simulated launch condition
- Minimum BW improves 2x ۲
 - Worst case bandwidth of 99% of \triangleright trials

Georgia Institute of Technology/Georgia Electronic Design Center

Standard MMF link

Measurement over fiber samples

Nominal 500 MHz-km MMF

@ 850 nm

FDDI grade

≻

- Impulse response measurements made on sample of 1.1-km MMF ٠
 - Measurements at 1550-nm \geq
 - Multimode launch created with mode-scrambler \geq
 - No optimization on fiber-to-fiber basis ≻
- Consistent bandwidth improvement demonstrates robustness and ۲ potential cost-effectiveness of SRE

Georgia Institute of Technology/Georgia Electronic Design Center

Measured bit error rate

- 1.25-Gbps data link in 1.1-km, 50-μm MMF
 - Externally modulate FP at 1.25 Gbps, launched via mode-scrambler
- MMF link completely dominated by ISI
 - ~8 dB SNR penalty due to non-optimal MSM
- SRE improved deterministic jitter and vertical eye opening
- Modal noise not apparent in measurement
 - Modal noise can be issue with spatial filtering by SRE
- Modal noise managed by lowcoherence FP source
 - *i.e.* source coherence time less than DMD

Georgia Institute of Technology/Georgia Electronic Design Center

Synergy of DFE and SRE

- Numerical simulation of DFE on MMF fiber link to increase capacity up to 2.5 Gbps
 - Simulate data link at with DFE enhancement but with measured impulse response of fiber used in BER experiment to model link
 - with and without SRE
- 2.5 Gbps possible with SRE alone
- SRE with DFE improves on ISI penalty compared to SRE alone
 - > ISI penalty reduced by 3 dB with DFE
- DFE with SRE permits simplified DFE structure
 - Reduced from 3 backwards tap without SRE to 1 backward tap with SRE

Conclusion

- Segmented photodetector works to equalize MMF link
 - > Equalization exploits optical information lost by conventional photodetection
- Simplified two-segment with photocurrent subtraction shown to be effective
 - > Maintains simplicity and cost-effectiveness characteristic of MMF
- SRE is independent of temporal behavior of modes
 - > Effect of high-ordered modes are suppressed regardless of magnitude or direction of DMD
 - Independent of wavelength
 - Independent of fiber length
 - Independent of transmission format
 - Independent of data rate
- SRE can be optimized for launch condition
 - > SRE can be implemented with EF launch or other launch conditions
- SRE works with DFE for further enhancement than by either alone

SRE related publications

- K. M. Patel and S. E.Ralph, "Improved multimode link bandwidth using spatial diversity in signal reception," *CLEO Technical Digest*, p. 416, May 2001.
- K. M. Patel and S. E. Ralph, "Spatially resolved detection for enhancement of multimode-fiber-link performance," *Proc. LEOS. Annual Meeting*, vol. 2, pp. 483–484, Nov 2001.
- K. M. Patel and S. E. Ralph, "Enhanced multimode fiber link performance using a spatially resolved receiver," *IEEE Photon. Technol. Lett.*, vol. 14, pp. 393-395, March 2002.
- K. M. Patel and S. E. Ralph, "Multimode fiber link equalization by mode filtering via a multisegment photodetector," *IEEE Microwave Symposium Digest*, vol. 2, pp. 1343-1346, June 2003.
- K. M. Patel, A. Polley, and S. E. Ralph, Modal dispersion compensation by simultaneous use of spatially resolved equalization and restricted mode launch," in *Proc. LEOS. Annual Meeting*, vol 2, pp 973-974, 2003.
- S. E. Ralph, K. M. Patel, C. Argon, A. Polley, and S. W. McLaughlin "Intelligent receivers for multimode fiber: optical and electronic equalization of differential modal delay," in *Proc. LEOS. Annual Meeting*, vol. 1, pp.295–296, Nov 2002.
- R. Khosla, K. Kumar, K. M. Patel, C. Pelard, and S. E. Ralph, "Equalization of 10GbE multimode fiber links," in *Proc. LEOS. Annual Meeting*, vol 1, pp 169-170, Oct. 2003.
- C. Argon, K. M. Patel, S. W. McLaughlin, and S. E. Ralph, "Spatially resolved equalization and decision feedback equalization for multimode fiber links," in *Proc. LEOS Summer Topical*, pp. 19-20, July 2002.
- C. Argon, K. M. Patel, S. W. McLaughlin, and S. E. Ralph, "Spatially resolved equalization and forward error correction for multimode fiber links," in *Proc. of ICC*, vol. 3, pp 1726-1730, May 2002.
- C. Argon, K. M. Patel, S. W. McLaughlin, and S. E. Ralph, "Exploiting diversity in multimode fiber communications links via multisegment detectors and equalization," *IEEE Comm. Lett.*, vol. 7, pp. 400-402, August 2003.

Ultrafast Optical Communications Lab

- FOTP-220 compliant DMD measurement of MMF in the time domain
- High-resolution impulse response characterization of optical and optoelectronic component
 - > 8-ps resolution at 850 nm and 1550-nm
 - > 100-ps resolution at 1300 nm
- Frequency response characterization of optical and optoelectronic components
 - > up to 20 GHz
- Optical source characterization (800 thru 1600 nm)
 - Spectral content (0.01-nm resolution)
 - Temporal content (8-ps resolution)
 - Jitter (800 fs jitter)
 - Speckle contrast
- Numerical modeling
 - Fiber/waveguides
 - > Links
 - > Electronic dispersion compensation

Georgia Electronic Design Center

- "Equalize This!"
 - Georgia Tech testbed: Design and implement testing and benchmarks for high-speed backplane and serial interconnect markets.
- UXPi testbed
 - Standardized backplane testing methodology
 - Silicon testing methodology
- Capabilities
 - Frequency/Time Domain Analysis
 - Cross talk (NEXT, FEXT)
 - Forward Transmission
 - Eye diagrams
 - Bit Error Ratio (BER)
 - Jitter Analysis
 - Random Jitter (RJ) results from accumulation of random process
 - Deterministic Jitter (DJ) results from systematic effects
 - EMI Analysis

Simple SRE variants

- Consideration of other SRE variations using measured impulse response
 - > Compute SRE response from measured impulse response by individual PD segments
 - Overfilled launch condition
- Single segment spatial filtering

 $h_{sre}(t) = h_{inr}(t)$

 Recombination with timing adjustment

 $h_{sre}(t) = h_{inr}(t) + h_{otr}(t + \Delta \tau)$

 Conclusion: Photocurrent subtraction is useful given limited modes separation by MSD

Bandwidth gain trade-off

- Variation in BW gain versus discarded optical power
 - > 9 samples of 1.1-km, 50-µm MMF
 - Fixed configuration: source, launch, and MSD size
- Similar trade-off as demonstrated with simulation
 - Variation in slope results from unique fiber characteristics

Georgia Institute of Technology/Georgia Electronic Design Center

Monte Carlo simulation (cont.)

- Mean bandwidth gain of 2.1x
- Low lying BWG are for EFL which result in high link bandwidth
- MSD can be optimized for launch conditions the results in consistently higher bandwidth
 - > *i.e.* lower HOM energy

