Signal metrics for 10GBASE-LRM

Piers DaweAgilentJohn EwenJDSUAbhijit ShanbhagScintera

Statement of problem

- Measure signal strength and quality
 - Need: from data terminal equipment (DTE) at TP2
 - Need: from stressed eye tester at TP3
 - Want? need?: from DTE after fiber at TP3
- Clock may not be available
 - Pattern trigger unlikely to be available
 - Have to recover these with e.g. CDR or not use them
- Eye may be much more closed than other standards

Candidate metrics

- Low frequency OMA
- "High" (mixed) frequency OMA
- Alternative estimate of L.F. OMA
- Asynchronous OMA
- (AC) RMS signal strength
- Mean power
 - *more…*

Low frequency OMA

Histogram

window

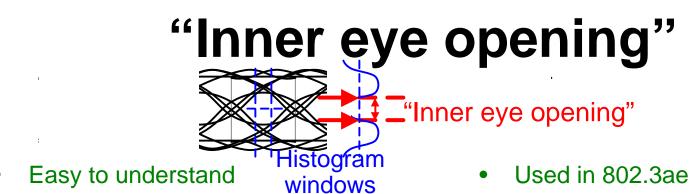
• Easy to understand

- Good basis for analysis •
- Used in 802.3ae

..F. OMA

Histøgram

window

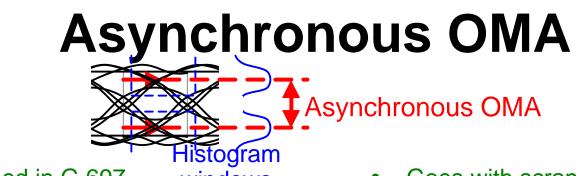

- Goes with 8B/10B code
- Not (much) affected by dispersion in channel
- Not mission mode
 - DTE under test has to be put into non-usual operation may not be practicable. Can't be used in service.
- Clocking or triggering
 - Benefits from a clock synchronised to signal, but pattern's transition density is unusually low – CDR often will not lock to it
 - However, can trigger the scope to the pattern if the edges aren't too poor needs checking out
- Not very reproducible
 - Reading depends on fine details of frequency response of DUT at (harmonics of) pattern length
- Not very representative
 - Does not reflect useful signal except in limit of no distortion
- Little affected by noise San Antonio TX Nov. 2004

"High" (mixed) frequency OMA

- Histogram
- Easy to understand windows

- Goes with scrambled code
- Used in EFM. The implicit basis of SONET specs
- Not the starting point for analysis an "output" quantity rather than an "input"
- Affected by dispersion in channel
 - In non-EDC systems this effect is small
 - In EDC systems this effect is beneficial:
- Representative Reflects useful signal even with distortion and pattern dependent effects more representative with EDC than not
- Mission mode
 - No special patterns needed. Can measure in-service signal. No control over DUT needed
- Needs a clock synchronised to signal Inconvenient if eye is near or fully closed
- Good for clock recovery Normal transition density, can use available CDRs
 - Does not need pattern trigger
- Fairly reproducible
 - Reading depends a little on fine details of frequency response of scope
- Little affected by noise, robust measurement

San Antonio TX Nov. 2004



- Method fails if eye completely closed
- Not the starting point for analysis an "output" quantity rather than an "input"
- Affected by dispersion in channel
 - In non-EDC systems this effect is small
 - In EDC systems this effect is beneficial:
- Representative Reflects useful signal even with distortion and pattern dependent effects very relevant and representative without EDC, ~-ISI
- Mission mode
 - No special patterns needed if accuracy not critical. Can measure in-service signal. No control over DUT needed
- Needs a clock synchronised to signal Inconvenient if eye is near closed, fails if eye is closed
- Good for clock recovery Normal transition density, can use available CDRs if the eye is open
 - Does not need pattern trigger
- Reading depends a little on fine details of frequency response of scope
- Affected by noise, needs careful definition of statistical significance

Alternative estimate of L.F. OMA

- L.F. OMA
- Suggested in 802.3ae windows

- Goes with scrambled code
- Not the starting point for analysis an "output" quantity rather than an "input"
- Weakly affected by dispersion in channel
- Not very representative
 - Does not reflect useful signal except in limit of no distortion
- Mission mode
 - No special patterns needed. Can measure in-service signal. No control over DUT needed
- Needs a clock synchronised to signal Inconvenient if eye is near or fully closed
- Good for clocking Normal transition density, can use available CDRs if the eye is open
 - Does not need pattern trigger
- Little affected by noise
- Not a robust measurement
 - If edges cross histogram window, reading is polluted
 - Problem for fast ringy signals
 - Use of peaks ("modes") rather than means may help for manual measurement

Described in G.697 windows

- Goes with scrambled code
- Not the starting point for analysis an "output" quantity rather than an "input"
- Affected by dispersion in channel
 - In EDC systems this effect is beneficial:
- Representative Reflects useful signal even with distortion and pattern dependent effects more representative with EDC than not
- Mission mode
 - No special patterns needed. Can measure in-service signal. No control over DUT needed
- Simple
- No clock needed! Scope can be asynchronous to pattern
 - If clock used, set window to 1 UI long
 - Normal transition density, can use available CDRs
- Doesn't work well (I think) if eye is closed
- Little affected by noise
- Can be enhanced to provide a measure of distortion TP2 metric?
- (If there is no overshoot, range of histogram ~ OMA + 2.noise) San Antonio TX Nov. 2004 Signal metrics for 10GBASE-LRM

(AC) RMS signal strength

 \mathbf{I} RMS signal strength = standard deviation

- Very familiar concept window
- Goes with scrambled code
- Not the starting point for analysis an "output" quantity rather than an "input"
- Affected by dispersion in channel in EDC systems this effect is beneficial:
- Representative Reflects useful signal even with distortion and pattern effects more representative with EDC than not
 - Good TP3 metric for assessing real signals and fibre plant
- Mission mode
 - No special patterns needed. Can measure in-service signal. No control over DUT needed
- Very simple
- No clock needed! Scope can be asynchronous to pattern
 - If clock used, set window to 1 UI long
 - Normal transition density, can use available CDRs
- No scope needed! Can use RF power meter with right bandwidth filter
- Keeps working even if eye is fully closed!
- By comparison with e.g. OMA, provides a measure of distortion
 - TP2 metric, even TP3 metric!
- Weakly affected by noise Correcting for instrument noise is well known San Antonio TX Nov. 2004 Signal metrics for 10GBASE-LRM

S.D. of middle of eye

RMS signal strength = standard deviation

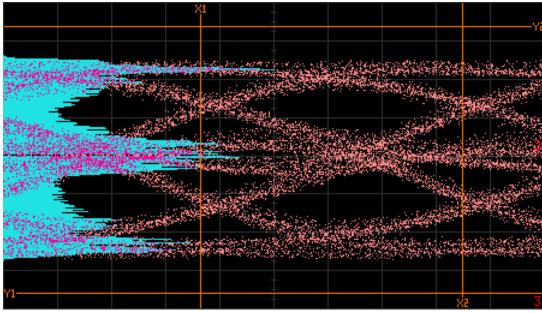
- Very familiar concept window
- Goes with scrambled code
- Not the starting point for analysis -an "output" quantity rather than an "input"
- Affected by dispersion in channel in EDC systems this effect is beneficial:
- Representative Reflects useful signal even with distortion and pattern effects more representative with EDC than not
- Mission mode
 - No special patterns needed. Can measure in-service signal. No control over DUT needed
- Needs a clock synchronised to signal Inconvenient if eye is closed
- Good for clock recovery Normal transition density, can use available CDRs if the eye is open
 - Does not need pattern trigger
- Reading depends a little on fine details of frequency response of scope
- Little affected by noise
- Fails if eye is fully closed and middle of eye cannot be identified
- By comparison with e.g. OMA, provides a measure of distortion
- A useful lab technique, could be used as TP2 metric

Mean optical power

Dark level

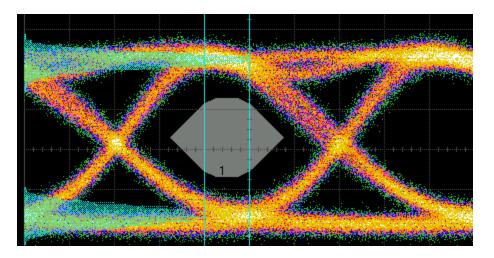
Mean optical power

Very familiar
Appears in standards

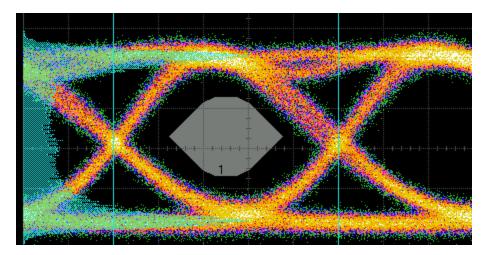

- Code agnostic (if we believe the DUT controls mean power)
- Only weakly relevant for analysis affects obscure things like reflection noise
- Relevant for eye safety and overload. Not affected by dispersion in channel
- Not representative Does not measure useful signal. Poor metric.

stooram

window

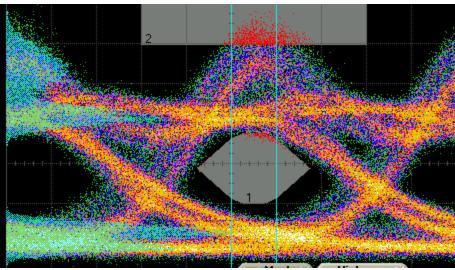

- Poor TP3 metric for highly distorted signals in 10GBASE-LRM where
 loss should be small
- Reasonable TP3 metric for high-loss physical layers
- Mission mode
 - No special patterns needed. Can measure in-service signal. No control over DUT needed
- Seems simple but need to find dark level calibration step
- No clock needed! Scope can be asynchronous to pattern
 - If clock used, set window to 1 UI long.
 - Normal transition density, can use available CDRs
- No scope needed! Can use optical power meter
- Keeps working even if eye is fully closed
- Little affected by noise
 San Antonio TX Nov. 2004
 Sig

Example of closed TP3 eye and "asynchronous" histogram

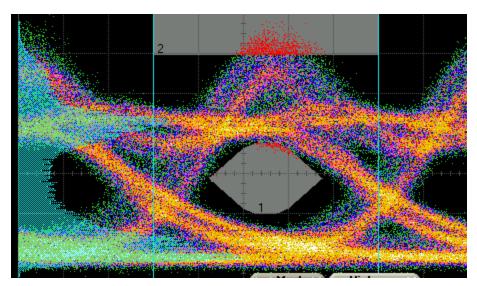


- Histogram is quite jagged
 - Can't identify peaks with confidence
 - Statistical measures like mean and standard deviation still work well

"Good to slow" transmitted eye – little overshoot

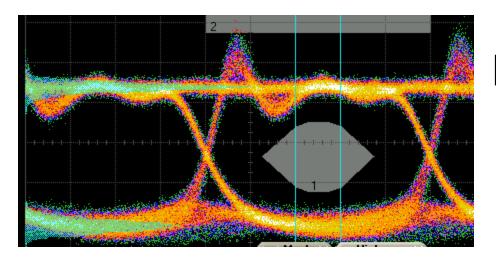


Histogram over central 0.2 UI

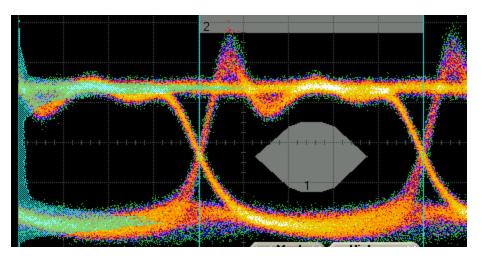


Histogram over 1 UI (same as asynchronous measurement)

"Bad" transmitted eye – large overshoot

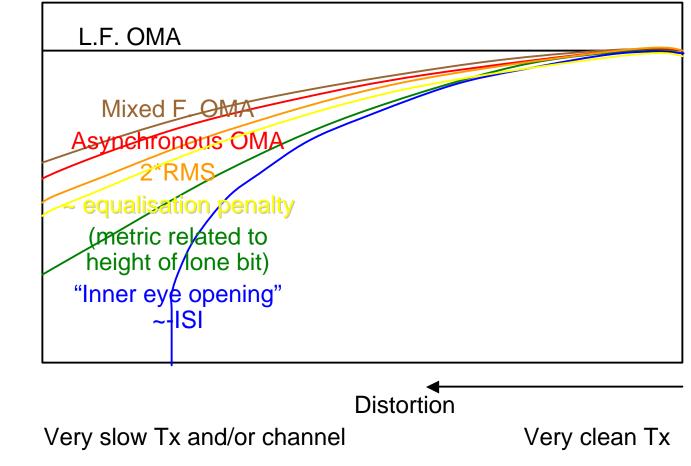


Histogram over central 0.2 UI

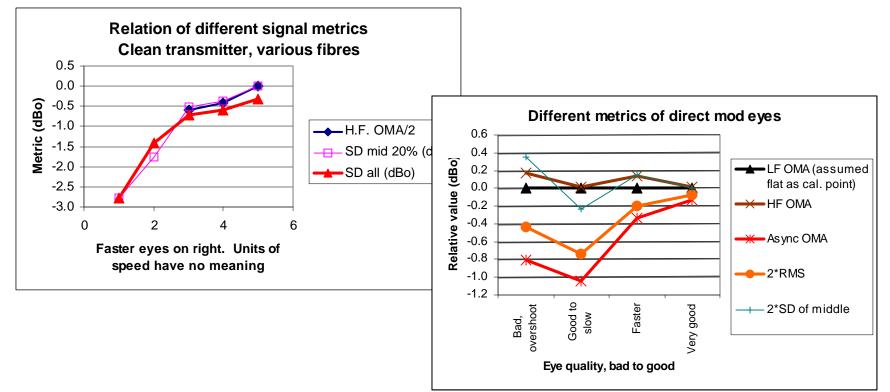


Histogram over 1 UI (same as asynchronous measurement)

"Faster" transmitted eye



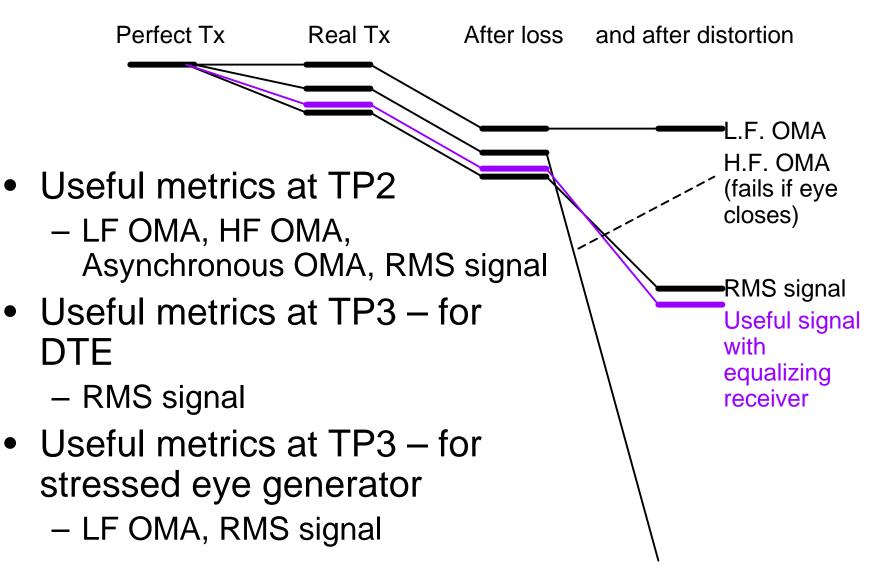
Histogram over central 0.2 UI

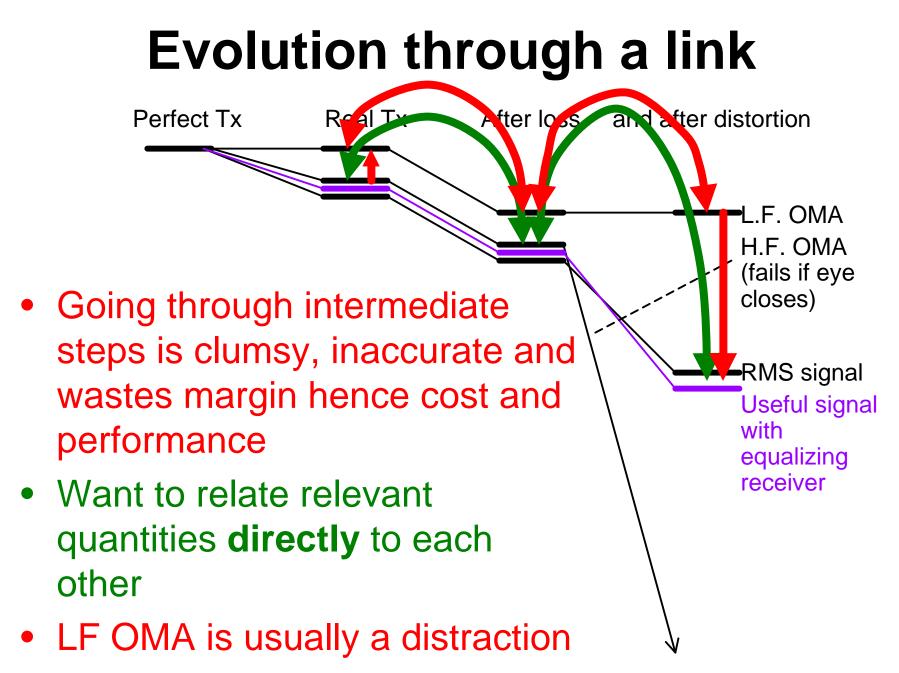

Histogram over 1 UI (same as asynchronous measurement)

Correlation among metrics

Expect several metrics to correlate tolerably to useful signal strength with equalising receiver

Measured results




- Trends as expected except when overshoot dominates
 - Identifies channel-induced eye closure well
 - At TP2, little difference between LF and HF OMA

Work to do

- Measures of variance are affected by laser overshoot
 - Need to study effect of overshoot on equalisers more anyway
- These metrics don't distinguish between deterministic, pattern dependent (correctable) impairments and truly random (not correctable) ones
 - Still need to study waveform capture techniques to quantify that issue

Evolution through a link

San Antonio TX Nov. 2004

Recommendations

- Specify Tx high power limit by (H.F. or L.F.) OMA and mean power
- Specify Tx lower power limit by H.F. OMA and mean power
 - Values will depend on TP2 signal quality investigation
- Specify Tx distortion by eye mask...
 - With defined statistical significance per EFM
 - Coordinates TBC depending on TP2 signal quality investigation
- …And (LF OMA 2•RMS signal strength) or other histogram-based metric as an EDC-relevant spec.
- Consider using (LF OMA 2•RMS signal strength) as metric for stressed eye set-up
- Propose RMS signal strength as metric for TP2 and TP3 in network administration
 - E.g. diagnosing network problems: bad Tx, bad fibre or dirty connector?