Channel Metric Results for OM3 Fibers at 1300nm

Sudeep Bhoja Petar Pepeljugoski John Ewen Big Bear Networks IBM JDS Uniphase

IEEE 802.3 Interim Meeting Ottawa, Canada Sept 2004

Contents

- OM3 Simulation Model
- OSL 3dB BW
- PIE metrics
 - Linear Equalizer
 - Decision Feedback Equalizer
 - 300m
 - ±3µm launch tolerance
- Dispersion Penalty for link lengths
- Summary

OM3 Simulation model

- 850nm TIA OM3 delay set converted to 1300nm by P. Pepeljugoski
 - 5000 fibers in the delay set
 - Subset of these fibers were used in simulations
 - Fibers in subset satisfy both criteria:
 - 500MHz·km at 1300nm
 - one of the six DMD mask sets at 850nm
- 10 mode-groups were used in calculations
- MPD's for $50\mu m$ fiber used in these simulations from John Abbott
- PIE-L & PIE-D
 - 47.1ps risetime Gaussian Tx filter
 - 7.5GHz, 4th-order Bessel-Thompson Rx filter

3dB Bandwidth vs. Launch offset

- 802.3z MCP (13 +/- 3μ m) results in min Bandwidth > 500MHz·km
- Recommend using PIE metrics instead of 3dB BW to set launch parameters
 - EDC dispersion penalty is poorly correlated to 3dB BW

PIE metrics for OM3 at 300m

- 5um OSL tends to produces split pulses \rightarrow very difficult for linear EQ
- Minimum penalty is at the center with local minimum at $\sim 8\mu m$
- Degrades monotonically for OSL greater than $8\mu m$

IEEE 802.3aq, Ottawa

Discussion

- OM3 fibers optimized for 850nm hence have systematic delay trend ~1.25ps/m @1300nm
- Exciting higher offset launches often results in wide pulses
 - Significant high frequency roll-off (monotonic)
 - 300m, 13μm OSL, 99% yield
 - PIE-L @ 7dB penalty
 - PIE-D @ 4.3dB penalty
- Exciting lower offsets often results in split pulses
 - Significant notches in frequency domain
 - 300m, 5µm OSL, 99% yield
 - PIE-L @ 8.5dB penalty
 - PIE-D @ 4.3dB penalty

Penalty for 300m (+/-3µm tolerance)

• 99% percentile in a 6μ m launch window is computed

Dispersion budget

- PIE-D may support 300m on OM3 fiber
 - Any OSL in the range $0 11 \mu m$ results in PIE-D below 4.5dBo
- PIE-L only supports 300m for center launch 0 +/- 3μm (practical?)
- ⇒ Connectors need to be included before drawing final conclusions

Penalty for 220m (+/-3µm tolerance)

- 99% percentile in a 6µm launch window is computed
- PIE-D supports 220m on OM3 fiber
 - Any OSL results in PIE-D below 4.5dBo
- PIE-L only supports 220m for center launch 0 ± 3μm (practical?)

Ideal Linear Equalizer link lengths

- Ideal infinite length Linear Equalizer (4.5dBo dispersion budget)
 - 180m for 802.3z OSL (13 ± 3µm)
 - 220m for OSL (8 ± 3µm)
 - 300m for Center Launch (0 \pm 3 μ m)

Ideal DFE link lengths

- Ideal infinite length Decision Feedback Equalizer (4.5dBo budget)
 - 260m distance for 802.3z OSL (13 ± 3µm)
 - >300m for Center Launch (0 ± 3µm) or OSL (8 ± 3µm)
- PIE-D on OM3 appears to meet the desired 300m yield target
 - Requires a different launch condition from 1GbE
- ⇒ Connectors need to be included before drawing final conclusions

Summary

- OM3 models produce split pulses & broad pulses
 - PIE-L suffers from both types of pulses
 - PIE-D performs well under split pulses but suffers somewhat from broad pulses
- 802.3z 50 μ m OSL (13 μ m ± 3 μ m) is not optimized for OM3
 - Recommend deriving TP2 launch specifications from PIE metrics
- Launch conditions for OM3 require further work
 - Simulations do not include effect of connectors
 - Connectors will likely degrade the results
 - Adoption of a 50μ m standard link model with connectors is required
 - 300m on OM3 will be difficult, but may not be impossible ...
- Common launch for OM3 & OM2 is desirable
 - Will repeat simulations when OM2 fiber model is available

Backup

PIE metrics for OM3 at 220m

99th percentile at each offset

Individual fibers

• 5um produces split pulse