PIE Metrics & Mask Testing

John Ewen

IEEE P802.3aq 10GBASE-LRM Task Force September 2004

Introduction

- Motivation
 - What is the effect of different Tx pulse shapes on PIE metric?
 - Investigate in the context of mask testing, e.g. at fixed "mask margin"
- Caveats
 - This is work in progress ...
 - PIE metric statistics are computed with each offset as a separate case
 - This is **NOT** the "consensus" method for computing percentiles.
 - Chosen to generate more cases \rightarrow smoother curves \rightarrow better sense of relative offsets
 - Absolute values of computed PIE metrics not valid per current group consensus
 - ⇒ Only relative PIE metric values are presented
 - Normalized 80th percentile of PIE-x to 0dB for the "standard" configuration

Simulation Methodology

$$x_k \longrightarrow \varphi(t) \xrightarrow{x(t)} g(t) \longrightarrow c(t) \longrightarrow r(t) \xrightarrow{y(t)}$$

- $\bullet \quad x_k^{} \in \{\text{-1, +1}\}$
- $\varphi(t)$ = unit rectangular pulse
- g(t) = transmit filter
- c(t) = channel response (fiber)
 - Cambridge 81-fiber model (Release 1.1)
 - 17 μ m 23 μ m OSL
- r(t) = receive filter
- "Standard" Configuration
 - g(t) = 47.1ps risetime Gaussian
 - r(t) = 7.5GHz, 4th-order BT

- TP2 eye mask
 - No channel
 - Includes 7.5GHz BT filter
- Simulation methodology
 - Investigate alternate g(t)
 - Compute eye diagrams
 - Compute PIE metrics
- Compare waveforms relative to
 PIE metric performance

Simulated Eye Diagrams

- 10GBASE-LR mask
- OFSTP-4a mask scaling (Clause 52 definition)
- No noise included
- "Standard" configuration shows ~65% mask margin
- Choose a few examples that just pass the mask
 - All three examples have 5% mask margin
- LTI system only nonlinear distortions not included

Relative PIE Metrics @ 220m

- PIE metric variation for different Tx pulse shapes (same mask margin):
 - ~0.35dB for PIE-L / ~0.25dB for PIE-D (@ 80th percentile)
- Offset between "standard" configuration and 3 examples
 - ~1.6dB for PIE-L / ~0.8dB for PIE-D (@ 80th percentile)

Relative PIE Metrics @ 300m

- PIE metric variation for different Tx pulse shapes
 - Variation between 3 examples insensitive to length
 - Offset relative to "standard" configuration insensitive to length

Noise & Mask Testing

IEEE P802.3aq 10GBASE-LRM

Relative PIE Metrics @ 300m

- Absolute $\triangle PIE$ -x decreases with increasing noise (& less ISI)
- Range of $\triangle PIE$ -x with increasing noise (& less ISI)
 - ~ constant for PIE-D
 - decreases for PIE-L

Summary

- Mask test allows more ISI than "standard" configuration used to calculate PIE-x
 - Is this effect included in budget?
- Mask test allows different pulse shapes with same mask margin with different PIE-x values
 - Is this effect included in the budget (e.g. in general "implementation" penalties)?
- Noise (e.g. RIN & scope noise)
 - Mask testing becomes a stochastic process
 - See www.ieee802.org/3/efm/public/may03/optics/dawe_optics_2_0503 for an excellent presentation on the subject of mask testing, noise, repeatability, ...
- Other impairments (nonlinear distortion, jitter,...)?