EDC Performance versus Tx Specifications and Its implications for TP2 testing

Jesper Hanberg

Martin Lobel

Divisional Technology Office

Optical Networking Components Division (OND) Intel Communications Infrastructure Group Intel Corporation

Sep. 2004

IEEE 802.3aq meeting - Ottawa

Intel Communications Group

Martin.lobel@intel.com Jesper.hanberg@intel.com

Objective of presentation

- Establish an understanding of how the characteristics of a transmitter influence the link penalty and the performance of EDC
- How do we evaluate the characteristics of the transmitter in a EDC link?
 - TP2 testing: How can EDC performances be predicted?

Laser Rate equations

- Solve rate-equations using matlab
- Initial input data from Cartledge, J. Lightwave tech. vol 15, no. 5 1997 p 852
- laser with threshold current of 16.6 mA
- Parameters modified to give 4 other lasers with approx. same I_{th} and 8, 13, 17 and 32 GHz Relax. freq.
- I_{bias}= 70 mA; I_{mod} = 100 mApp

laser diode parameters

Laser Rate equations

$$\begin{cases} \frac{dP}{dt} = G \cdot P + Rsp - \frac{P}{\tau_p} \\ -\frac{dN}{dt} = \frac{I}{q} - \frac{N}{\tau_c} - G \cdot P \\ G = G_N (N - N_0)(1 - \varepsilon_{NL}) \end{cases}$$

$$\frac{d\phi}{dt} = \frac{1}{2} \beta_c \left[G_N (N - N_0) - \tau_p \right]$$

Eyediagrams – 20 GHz package - BtB

Page 5

Ibias= 70 mA; Imod = 100 mApp

Relative Penalty Back to Back – no EDC

Penalty at BER=10^-9

Table 1

intel

Package	Bad	Good	Perfect	
Laser	(4 GHz BW)	(8 GHz BW)	(20 GHz BW)	
Bad (BW 8 GHz)	7.1	3.6	3.0	
Good (BW 13 GHz)	5.8	3.1	2.4	
Better (BW 17 GHz)	3.1	1.2	0.9	
Perfect (BW 32 GHz)	2.2	0.5	0 (reference)	

Intel Communications Group

•lbias= 70 mA; Imod = 100 mApp

all numbers in dBo

Relative Penalty Back to Back – with EDC DFE: 5- taps FFE + 2-taps FB

Table 2

intel

Package	Bad	Good	Perfect	
Laser	(4 GHz BW)	(8 GHz BW)	(20 GHz BW)	
Bad (BW 8 GHz)	1.9	1.0	8.0	
Good (BW 13 GHz)	1.7	8.0	0.6	
Better (BW 17 GHz)	0.9	0.3	~0	
Perfect (BW 32 GHz)	0.5	~0	< 0	

Penalty at BER=10^-9

all numbers in dBo

Intel Communications Group

Ibias= 70 mA; Imod = 100 mApp

Relative Penalty after 300m fiber – with EDC DFE: 5-taps FFE + 2-taps FB

Penalty at BER=10^-9

CamMMF1p0f42020i Table 3

Package	Bad	Good	Perfect	
Laser	(4 GHz BW)	(8 GHz BW)	(20 GHz BW)	
Bad (BW 8 GHz)	4.7	3.8	3.6	
Good (BW 13 GHz)	4.5	3.6	3.4	
Better (BW 17 GHz)	3.7	3.0	2.9	
Perfect (BW 32 GHz)	3.2	2.6 9.7 (no EDC)	2.5 8.2 (no EDC)	

Intel Communications Group all numbers in dBo

Ibias= 70 mA; Imod = 100 mApp

into

Conclusions from 'EDC performance vs relaxed transmitter specs'**

- A Decision-Feedback Equalizer seems to be able to compensate for both bandwidth limiting effects and nonlinearities originating from the laser source and package
- A Feed-Forward Equalizer seems to be able to compensate for bandwidth limiting effects (in package)
- The penalty of the fiber and of the laser seems to add up:
 - With a DFE the penalty difference between BTB (w/EDC) and fiber (w/EDC) is approx. 2.8 dB (fiber penalty) for all package+laser combinations
 - This is not the case for a Feed-Forward Equalizer

This is not correct in the general case

**http://www.ieee802.org/3/aq/public/upload/lobel_1_0804.pdf

Intel Communications Group

In the search of The General Case

Intel Communications Group

Reference Tx – Back-to-back

4-order Bessel Thomson Tx

3.4 GHz

Time [pS]

Txcutoff 3.4 GHz - Bessel-Thomson filter

Time [pS]

Intel Communications Group

Reference: 20GHz

intel

Low speed laser – Tx charateristics - BtB

The penalty is less than 3 dB (Eye mask spec) if EDC is applied

Page 13

Ibias= 50 mA; Imod = 60 mApp (4-order 4GHz BT applied before laser)

intal

Intel Communications Group Low-speed laser = 'good' 8 GHz f_{res} (see table in back-up)

Full link – fiber penalty estimation

Table B

CamMMF1p0f42o20i.txt

	No EDC	5-taps FFE	9-taps FFE	5+2-taps DFE	9+2-taps DFE			
Bessel Thomson 3.4 GHz filter		11,9	7,7	3,7	3,2			
Bessel Thomson 4 GHz filter		11,0	7,2	3,4	tbc			
Bessel Thomson 8 GHz filter	8,7	8,5	5,3	2,7	tcb			
Bessel Thomson 20 GHz filter	8,2	7,9	4,7	2,6	2,2			
low speed 4 GHz BW limitation	-	-	9,8	4,7	4,2	\bigvee		
	Tx: 20 GHz BT - Estimation of penalty of fiber alone (reference is still 'no EDC' Back-to-back)							
Tx pattern B	T filter	fiber	\rightarrow	BT filter 7.5 GHz	EDC	Rx		
Intel Communications Group all numbers in dBo						nt _e l		

42o20i Cambridge file

Table C

			Fiber w/EDC + Tx w/o EDC		Fiber + Tx w/EDC		Fiber w/EDC + Tx w/EDC
	Тх	Filter	Table A+ table B		Table B		Table A + table B
42020i		5-taps FFE	10,1 (7.9+2.2)	<=	11,0	>	8,7 (7.9+0.9)
	4 GHZ BT	9-taps FFE	7,0	<=	7,2	>	5,3
		5+2-taps DFE	4,8	>	3,4	>	3,0
	Laser	9-taps FFE	9,4	<=	9,8	>	7,5
	Low- Speed 4GHz	5+2-taps DFE	7,2	>	4,7	>	4,1
		9+2-taps DFE	6,8	>	4,2	>	4,1

Intel Communications Group

all numbers in dBo

CamMMF1p0f42o20i.txt

18017i Cambridge file

Table D

intel

	Тх	Filter	Fiber w/EDC + Tx w/o EDC		Fiber + Tx w/EDC		Fiber w/EDC + Tx w/EDC
18017i		5-taps FFE	5,7	>	5,2	>	4,3
	4 GHZ BT	9-taps FFE	5,1	>	4,5	>	3,5
		5+2-taps DFE	5,7	>	5,1	>	3,7
	Laser	9-taps FFE	7,6	>	6,9	>	5,6
	speed 4 GHz	5+2-taps DFE	7,9	>	6,9	>	4,8
	BT	9+2-taps					
		DFE	7,5	>	5,3	>	4,8

CamMMF1p0f18o17i.txt

Intel Communications Group

all numbers in dBo

48o17i Cambridge file

Table E

intel

	Тх	Filter	Fiber w/EDC + Tx w/o EDC		Fiber + Tx w/EDC		Fiber w/EDC + Tx w/EDC
48017i		5-taps FFE	7.0	>	6.0	>	5.6
	4 GHz BT	9-taps FFE	5.9	>	5.4	>	4.3
		5+2-taps DFE	5.9	>	5.4	>	4.1
	Laser	9-taps FFE	8.4	>	7.7	>	6.5
	Low- speed 4 GHz	5+2-taps DFE	8.3	>	5.9	>	5.3
	BT	9+2-taps	8 2	>	5.5	>	54

CamMMF1p0f48o17i.txt

Intel Communications Group

all numbers in dBo

Observations

 The combined solution (fiber +Tx) has always higher penalty than the individual contributions.
In some cases using a DFE they are close to equal

 The addition of the fiber suppresses the ability of the EDC to correct for Tx impairments

– In some cases for a FFE the fiber enhances the penalty of the Tx !

-The above observations have been confirmed using the 'good' laser with a 4GHz and 8GHz package.

- Preliminary simulations using a laser that is less damped (ringing) seems to confirm the observations also.

Summary

- FFE can correct Tx impairments in BtB configuration
 - The observed/measured FFE correction in BtB will be reduced significantly when fiber is added (amount is fiber and EDC filter dependent and may be negative)
- DFE corrects laser impairments even after fiber
 - The observed/measured DFE correction in BtB will only be slightly reduced when fiber is added (amount is fiber dependent)
 - The correction can be significantly reduced if FFE section in DFE is too small to handle the impulse response

Conclusions of relevance for TP2 testing

- The 'trace approach' can establish a clear link between the Tx impairment and its penalty.
 the burden falls directly on the source of the impairment
- A clear link can only be established if a 'fiber model' is included in the math of the 'trace approach'
 - May complicate math significantly
- A clear link is highly dependent on complexity of EDC filter
 - It seems that math must use finite EDC filter complexity
 - Requirement of minimum filter complexity (# taps) will need to be specified

Closing remarks

 Relaxation of Tx specs worse than LR eye mask requires a DFE solution

DFE can effectively correct Tx impairment

- In the case of a DFE, the 'Trace approach' allows a closer specification of the Tx characteristics
- In the case of a FFE, the 'Trace approach' offers limited advantages over 'eye mask'

Backup

Intel Communications Group

Lase	r para	imete	rs /	Cartled	lge laser
parameter	8 GHz	13 GHz	17 GHz	32 GHz	
nsp		1.7			Spontanous emission factor []
L		0.025			cavity length [cm]
w	0.0002	0.0001			active layer width [cm]
d	1e-5	8e-6			active layer thickness [cm]
Gamma		0.24			Confinement factor []
g0		1.6e-6	3e-6	1e-5	gain slope constant [cm^3/s)
neff		3.4			effective refractive index []
n		4			group refractive index []
vg		7.5e+9			Group Velocity [cm/s]
sig_g		2.13e-16	4e-16	1.33e-15	Diffential gain coeffienct [cm^2]
epsilon		1.48e-17			gain compression factor [cm^3]
eps_nl	2.96e-7	7.4e-7			Gain compression coefficient []
NT		1.07e+18			Carrier density of transparancy [1/cm^3]
Anr	4e+8	1e+8	1.27e+9	3e+9	Nonradiative recombination rate [1/s]
Brr		1e-10			Radiative recombination rate [cm^3/s]
C_Auger		3e-29			Auger recombination coefficient [cm^6/s]
a_int	25	20			internal loss [cm-1]
a_mir	48	155			Mirror loss [cm-1]
Page 23	values n	ot shown	are comm	on for all	lasers

Eyediagrams – 4 GHz package - BtB

Intel Communications Group Page 24

9

Eyediagrams – 8 GHz package - BtB

Intel Communications Group Page 25

Eyediagrams – 20 GHz package

Intel Communications Group Page 26