Update from Channel Model Ad Hoc Sub Group Task 4

Preliminary results of PIE metrics calculations

Presented by Yu Sun

Participants of Task 4 group

John Ewen	JDSU
John George, Yi Sun	OFS
David Cunningham, Piers Dawe	Agilent
Ali Ghiasi	BroadCom
Gary Shaulov, Brent Whitlock	Rsoft
Jim Morris	DOC
AI Brunsting	Panduit
Pete Hallemeier, Yu Sun	Optium
Jonathan King, Sudeep Bhoja	BigBear

1

- The ISI penalty or eye closure penalty is not straightforward predictor of EDC dispersion penalty
- PIE metrics have been used in previous study to predict dispersion penalty for Linear Equalizer Decision Feedback Equalizer
- PIE metrics depend on input pulse shape, propagation distance and launching condition

Goal of task 4: to quantify PIE metrics in the fiber channel model

Preliminary results for OSL and CL:

- Dependency of PIE calculation on input pulse width
- PIE metrics calculations for single fiber span case
- Preliminary PIE calculations results for multiconnector link

All simulations based on latest release of Cambridge

Simulation setup and PEI calculation

- Channel is simulated using in-house simulator (center launch) and Cambridge release 3.0 (OSL: 17µm, 20µm and 23µm)
- Composite pulse response $h(t) = p(t) * h_{ch}(t) * h_{r}(t)$
- Noise is a constant (bhoja_1_0704.pdf)

 $\sigma^2 = 10^{(\text{ESNR-2*optical dispersion penalty})/10}$, where ESNR = 17dB (BER = 10^{-12}); optical dispersion penalty = 6dBo

Channel modeling using in-house simulator

Dependency of PIE calculation on input pulse width

Effect of input pulse width on PIE metrics

The process is repeated for all 81 fibers.

PIE metrics calculation baseline comparison

Key parameters:

- Tx output pulse rising time 47.1 ps (20-80%)
- Fiber length: 220 m
- OSL worst case

Effect of input pulse width on PIE metrics

In all subsequent calculations 30 ps rising time pulse is used.

PIE metrics calculations for single fiber span case

Examples of optical pulse (220m)

IEEE 802.3aq 10GBASE-LRM Task Force – September 27-28, 2004

11

um

PIE metrics of 220 m fiber

PIE metrics of 300 m fiber

Summary of PIE metrics for different launches

 \wedge DIC – DIC

$\Delta \Gamma \Gamma = \Gamma \Gamma_{300m} = \Gamma \Gamma_{220m}$				
80 % coverage	Δ PIE_L	ΔPIE_D		
OSL +/- 5 μm	1.77	1.22		
CL +/- 5 µm	-0.07	0		
CL +/- 2 µm	-0.05	-0.01		
VL +/- 5um	1.2	0.92		

- PIE metrics of offset launch and Vortex launch degrade as the distance increase.
- PIE metrics for center launch is not sensitive to the change of fiber length.

- The dependency of PIE values on pulse width and distance is studied.
- Tx with a fast rising time is needed for difficult channels.
- PIE metrics for center launch is not sensitive to the change of fiber length.

Next step:

To compare the tolerance to the connector offset of different launch conditions using PIE metrics

Preliminary PIE calculations results for multiconnector link

Multiple connector link

- 1. Tx: NRZ pulse with 30ps rising time
- 2. Fiber Length: 220m and 300m
- 3. Polarization rotation is considered
- 4. In house simulator is used (all high order modes are considered)

PIE metrics of 220 m fiber

PIE metrics of 300 m fiber

80 % coverage	PIE_L	PIE_D	% of < 4.5 dB	PIE_L	PIE_D
OSL	6.42	4.5	OSL +/- 3 µm	65	80
CL	5.16	3.83	CL +/- 5 µm	72	90

Degradation of PIE metrics

$\Delta PIE = PIE_{300m} - PIE_{220m}$				
80 % coverage	$\Delta \operatorname{PIE}_L$	Δ PIE_D		
OSL	1.62	1.11		
CL	0.36	0.31		

- PIE metrics of offset launch degrade as the distance increase.
- PIE metrics for center launch is not sensitive to the change of fiber length.

From the preliminary simulation results

- 1. Specification of launch condition need to consider the outcome of task 4
- 2. A modified encircled flux or other launching condition specification may be needed.

Feed back and suggestions are welcomed The next task 4 group meeting: Oct 4th

