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1. Summary/Outline

This note is a continuation for the June 15,1998 note [1] which summarized
the derivation of the method. It summarizes initial results showing the cal-
culation of the mode power distribution Pm in a multimode �ber from the
measured near �eld intensity I(r), measured at the end of a length L. The
calculations use the modal functions  m(r) and assume that the near �eld
intensity can be expressed as the sum

I(r) =
X

m

Pm 
2

m(r)

The results included here include two theoretical examples and two examples
using actual data. The examples are:

1. (Figures 3, 4) Calculation of Pm if I(r) is simply the fundamental mode
(Pm = 1 for mode 1) and looks like a Gaussian. The method works
perfectly.

2. (Figures 5, 6) Calculaton of Pm if I(r) is due to equal excitation of all
modes (Pm = 1 for all modes) and looks like a parabola. The method
works perfectly.

3. (Figures 7, 8) Calculation of Pm if I(r) has a narrow multipeaked shape
(possibly a 780nm CD-laser). The method has problems and this ex-
ample warrants further discussion.

4. (Figures 9, 10) Calculation of Pm if I(r) has a slightly broader, also
multilobed shape (possibly a 850nm VCSEL). The method works but
this example also warrants further discussion.

Recall that the MPD calculation method being used is a modi�ed least
squares procedure, which calculates the MPD which minimizes a function
�2

tot which includes both a term forcing agreement between the predicted
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and measured I(r) and a term forcing some sort of smoothness on the Pm's.
The parameter controlling this smoothness is denoted by �a and the larger �a
is, the smoother the Pm's will be at the expense (in general ) of the agreement
between predicted and measured I(r).

2. Results
In these examples the 850nm modes are modeled using 32 mode groups (set-
ting Pm for the 33rd to zero), and we use data at 1um increments for I(r)
which also gives 32 points. Conceptually this gives a 32x32 matrix which
could be inverted, but the results below with �a = 0 show that this matrix
is ill-conditioned.

Figure 3 shows the calculated Pm for the case of a Gaussian input beam
optimized for the fundamental mode so that Pm = 1 for mode 1 and Pm = 0
otherwise. When �a = 0 there is noise but with a very small value of �a =
0:0001 it gives nearly the exact result. If �a gets too large the smoothness
criterion tries to reduce the abrupt change in Pm from 1 to 0 and hence for
this case a smaller �a is better. Figure 4 shows that the recalculated Ipred(r)
for each �a agrees with the original (theoretical) I(r), except for the largest
value (�a = 0:1)

Figure 5 shows the calculated Pm for the case of uniform modal excitation
so that Pm = 1 for all modes (the mode groups have been scaled to account
for di�erent groups having a di�erent number of modes). Again when �a = 0
the deconvolving of Pm gives a noisy result but only a small value of �a
is needed to give the exact result. Note that since the answer is Pm = a
constant, there is no degradation of the solution as �a gets larger and larger.
This is a special case. Figure 6 shows the corresponding I(r), which should
be identical to the I(r) curve in �gure 2 of the previous note [1], except �gure
6 is sampled at 1um intervals. (Figure 6 seems to show a dip at r = 0 while
�gures 1 and 2 show a peak, and this point needs to be explained)

Figure 7 shows the recalculated I(r) for an experimentally measured near�eld
and �gure 8 shows the corresponding modal powers Pm. In this case I(r)
has a multi-lobed, narrow shape which decays to zero at the outer radii. Fig-
ure 7 shows that as �a is increased the agreement between prediction and
experimental data becomes worse. This is to be expected to some extent with
any measured data (the previous examples used theoretically generated data
which can be inverted perfectly and the only obstacle is numerical round-o�
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error). However, �gure 8 shows that the predicted modal power for mode
groups 2 and 3 is negative and that increasing �a does not �x the problem.
What this means is that the modal functions being used do not �t the data.
This could be caused by (among other reasons)

1. Bad data (the �rst choice of theoreticians!)

2. Measurement may be at 780nm (CD-laser?) or there may be some
other reason that the 850nm modal functions are a poor �t.

3. The 289 modes have been organized into 32 mode groups assuming
uniform power within a group. This may be incorrect; for example,
di�erent fractions may be going into radial modes and azimuthal modes
or higher order azimuthal modes may not have much power. Only every
other mode group has a radial mode.

4. The actual intensity distribution I(r) may have to be analyzed as a two-
dimensional distribution I(x; y) or I(r; �) (this is related to explanation
3).

Figure 9 shows a second experimentally measured I(r) distribution and the
recalculated I(r) for di�erent values of �a. Here the agreement is reasonable.
Figure 10 shows the calculated modal powers and in this model the modal
powers drop out for certain groups. There isn't a good explanation for why
this would happen but with �a = 0:016 all the Pm's are positive or only
slightly negative, and there is still reasonable agreement in �gure 9. The
experimental data in �gure 9 does not drop completely to zero at the core
radius r = a, which causes �tting problems at the outside particularly with
P32.

3. Additional Discussion

The shape of I(r) in Figure 9 should be noted. There are obvious waves and
the lack of power in the 15-20um region compared to �gure 6 suggests the
hypothesis that power might be missing from higher order azimuthal modes
but not the radial modes.

The modal �tting procedure used here can be extended by separating out the
16 radial modal functions and allowing them to have a weight independent
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of the azimuthal modes. The procedure can be conceptually be carried to
estimates of the power in individual modes although small amounts of noise
in the experimental data may be ampli�ed, requiring an improved smoothing
procedure.

The experimental data being �tted needs to have been transmitted through
a su�ciently long length of �ber so that I(r) has dropped to zero at the
outside. Otherwise, the procedure won't work. However, the same point
applies to analysis of over�lled launches on short lengths. One solution is to
force Pm = 0 in the outer mode groups or to force an exponential decrease
in Pm in the outer mode groups.

The example in �gures 7 and 8 was not satisfactorily �t by the model, because
�gure 8 shows Pm < 0 for groups 2 and 3, which is unphysical. Because the
data shows Pm � 0 for m > 15, it may be feasible to re�t the I(r) data with
a subset of the individual modes and see if there is an improvement. Alterna-
tively, if the data was taken at 780nm, the mode groups can be recalculated
for 780nm to see if the �t improves.

Finally, the idea has been raised in the 2.2tg group that lobed or wavy I(r)
distributions like Figures 7 and 9 are prima facie proof that there is not equal
modal power within the mode groups. This is related to but not the same as
saying there is at best weak coupling within groups and that the assumption
of modal degeneracy is not valid. Much of the near�eld data is taken on
extremely short lengths of �ber (20m or less) where coupling cannot have
been complete, and hence the interpretation of I(r) data on short lengths
needs to take that into account. The question of whether coupling occurs on
the 100�500m lengths corresponding to LANs is a separate issue. For short
lengths, there has always been incomplete coupling, and the question is more
one of whether the radial and angular (near �eld and far �eld) extents of the
launch are balanced. This can be checked by measuring the far �eld power
as well as the near �eld power and comparing the power vs. radius and the
power vs. angle. The limit of near �eld / far �eld mismatch is the so-called
radial over�ll launch (ROFL) [2] which puts power only into the radial modes.
The ROFL launches appear to be among the least desirable for maximizing
the worst-case performance of potential problem �bers. The extension of
the current procedure described above, which breaks out the radial modes
separately, would theoretically be able to identify the ROFL-like character
of some launches.
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