
MPCP Timestamp Jitter with
Idle Deletion/Insertion

Marek Hajduczenia (marek.hajduczenia@zte.com.cn)

ZTE Corporation

© 2006, ZTE Corporation. All rights reserved.

IEEE 802.3av Task Force Meeting, Seoul, September 15-19 2008 2

Observed issues with MPCP timestamp jitter
Status for D2.0

FEC overhead is accounted for using FEC_overhead_max function,
which overestimates FEC overhead at PCS sublayer;

Actual behaviour of MPCP timestamp jitter:
Despite detailed analysis of state diagrams / their operation, there is still
significant MPCP timestamp jitter observed for certain sizes of frames;
MPCP timestamp jitter seems to become frame-size dependent (worst
situation possible)

Desired outcome from this meeting:
Examine the potential sources of MPCP timestamp jitter
Attempt to eliminate them or at least make MPCP timestamp jitter
independent from frame size

© 2006, ZTE Corporation. All rights reserved.

IEEE 802.3av Task Force Meeting, Seoul, September 15-19 2008 3

Hypothetical scenario [1]
Imagine a frame of size 22 x 8 bytes (176 bytes with framing)
followed by another frame of this size;
12 bytes of IPG (assuming balanced DIC) and 32 bytes of parity will
be added (result of FEC_overhead_max function call on
sizeof(data_tx) + tailGuard)
Total size of a block with extra IDLEs = 27 x 8 B = 216 B
DA ÷ DA distance is 27 x 8 B = 216 B

Pream
ble

D
A + SA (2B)

… … … … … … … … … … … … … … … … … … … …
FC

S + IPG
 (4B)

IPG
 (8B

)
ID

LE
ID

LE
ID

LE
ID

LE

...

ID
LE

Preamble ÷ FCS
22 x 8 B = 176 B

Pream
ble

D
A + SA (2B)

…

Preamble ÷ end of extra IDLE block
27 x 8 B = 216 B

DA ÷ DA
27 x 8 B = 216 B

… …

FEC_overhead_max

© 2006, ZTE Corporation. All rights reserved.

IEEE 802.3av Task Force Meeting, Seoul, September 15-19 2008 4

Hypothetical scenario [2]
What happens at Idle Deletion function:

VectorCount and DelCount are 0 at the first preamble word (assume last packet
ended clean and variables were reset after its transmission)
VectorCount = FEC_DSize at the word right before the 2nd preamble, DelCount is
set to FEC_PSize (4) only after transmission of FEC_DSize vectors;
The next clock is the 2nd preamble word (not (C+E)), the DelCount cannot be
deducted here.
Idle deletion is delayed to the end of the next packet.
After idle deletion, the distance of the two DAs is still 27 x 8 B

Pream
ble

D
A + SA (2B)

… … … … … … … … … … … … … … … … … … … …
FC

S + IPG
 (4B)

IPG
 (8B

)
ID

LE
ID

LE
ID

LE
ID

LE

...

ID
LE

Preamble ÷ FCS
22 x 8 B = 176 B

Pream
ble

D
A + SA (2B)

…

Preamble ÷ end of extra IDLE block
27 x 8 B = 216 B

DA ÷ DA
27 x 8 B = 216 B

… …

FEC_overhead_max

© 2006, ZTE Corporation. All rights reserved.

IEEE 802.3av Task Force Meeting, Seoul, September 15-19 2008 5

Hypothetical scenario [3]
What happens at FEC Encoder function:

An FEC encoding boundary starts right at the first preamble word;
The 4 words reserved as FEC parity by FEC_overhead_max are not
removed and are counted as the FEC data words;
Before the 2nd preamble word, 4 x 8 B blocks of FEC parity data need to
be added - the distance between the two consecutive DAs becomes 31
words.

Pream
ble

D
A + SA (2B)

… … … … … … … … … … … … … … … … … … … …
FC

S + IPG
 (4B)

IPG
 (8B

)
ID

LE
ID

LE
ID

LE
ID

LE

...

ID
LE

Preamble ÷ FCS
22 x 65b

Pream
ble

D
A + SA (2B)

…

FEC Data block
27 x 65b

DA ÷ DA
255B (full FEC code word)

… …

FEC_overhead_max

PAR
ITY

PAR
ITY

PAR
ITY

PAR
ITY

FEC Data + Parity block
27 x 65b + 4 x 64b => 255 B (after 64B/66B encoder)

PAR
ITY

PAR
ITY

PAR
ITY

PAR
ITY

© 2006, ZTE Corporation. All rights reserved.

IEEE 802.3av Task Force Meeting, Seoul, September 15-19 2008 6

Final thoughts
Data passing FEC decoder should always have fixed delay
Delay should also be independent from packet size
The current Idle Deletion state diagram does not perform correctly
under for packets of size 22 XGMII transfer columns (and smaller)

Occurs when bit 1 of preamble is aligned with start of FEC word
Extra IDLEs for FEC parity are not deleted correctly, forcing a data shift /
loss at the FEC encoder (data might be overwritten)
Needs more testing under longer runs of constant packet sizes (might be
important for CBR applications, where packet sizes are constant e.g. VoIP,
certain VOD with specific codecs etc.)

Up to 4 * 6.4 ns = 25.6 ns can be introduced for RTT from one side
of the link to the other. Is it considered ok for the RTT drift budget ?
A fix seems to be simple – initialize DelCount with FEC_PSize
(currently not initialized at all)

Thank You for Your attention

