Power Savings

Ryan Hirth 11/11/08

Introduction

- Methods exist with current standard to implement a power savings mode with little or no changes to the draft.
- Sleep mode request and response messages can be conveyed implicitly through existing Report and Gate messages.
- Control of the sleep mode can be controlled through the MAC Control Client

Reduced Polling Rate Sleep Mode

OAM is used to configure power down settings

- OAM message request (ONU->OLT)
 Sleep time (min, max)
- OAM message response (OLT-> ONU)
 - Typical Poll Rate (min, max)
 - Sleep Poll Rate (min,max)

Power cycle limits

- Minimum power up time is required for ONU to leave the Sleep state.
 - Transceivers take time to power on
 - Power supply stability
 - Optical/electrical sensitivity needs to stabilize
 - Clock recovery and equalization
 - Transmit calibration and initialization
- Maximum sleep time is limited by mpcp_timeout (1 second)

mpcp_timeout

This constant represents the maximum allowed interval of time between two MPCPDU messages. Failure to receive at least one frame within this interval is considered a fatal fault and leads to deregistration.

	-
TYPE	32-bit unsigned
VALUE	03-B9-AC-A0 (1 second)

report_timeout

This constant represents the maximum allowed interval of time between two REPORT messages generated by the ONU.

TYPE	32-bit unsigned
VALUE	00-2F-AF-08 (50 milliseconds)

Typical ONU Power

(single GE port UNI)

RX power down

- Receiver power down is not recommended
- Broadcast packets will not be received by ONU
 - Network requires response from packets such as BPDUs to prevent MAC addresses from aging out.
 - ONU needs continued management control through OAM
- Potential RX power savings is 400mW
 - Less than 25% of the power reduction
- APD diodes require temperature stability
 - Transceiver stability is critical especially for PR-30

Performance Impact

- Increased latency for packet(s) upstream while in sleep state equal to a maximum of one polling interval
- Downstream performance not affected
- Minimal impact to any services

European Commission: "Code of Conduct on Energy Consumption of Broadband Equipment"

Draft Version 3 Issue 15-17 July 2008

- "When the equipment is in the DSL-low-power-state ... broadband services need to be offered to a user with almost the same quality and setup times as in on-state."
- "... power management is not hampering the user experience of the targeted service ... not in contradiction with the applicable standard"
- "The CPE-low-power state for home gateways (including/excluding modem is based on putting the LAN side modules that are not needed or active into a low-power state"
- "The transition time should be less than 1 second in order to not reduce the customer experience"

Impact to standard

- Too late to add new features to the draft
 - No changes are required for this proposal
 - Any modification will significant delay completion of the standard.
- Existing 1Gbps EPON standard and 10Gbps EPON draft already support Reduced Polling Rate Sleep Mode.

Comparison of proposals

- Signal a sleep request from ONU to OLT
 - New MPCP message

or

- Report message of ZERO length
- OLT responds with a sleep grant
 - New MPCP message

or

- Change Gate interval
- Sleep mode parameters are configured
 - New MPCP message

or

– Through OAM