Reducing network energy consumption via sleeping and rate-adaptation

Sergiu Nedevschi UC Berkeley

Joint work with:

Sylvia Ratnasamy (Intel Research), Lucian Popa (UC Berkeley), Gianluca lannaccone (Intel Research), David Wetherall (Intel Research and U. Washington)

Overview

Last time: presented higher-layer algorithms that exploit hardware support for low-power operation [ratnasamy_1_1107.pdf]. Results were based on:

- real-world measurements of network traffic
 (Abilene Internet2 backbone, Intel corporate network)
- simulated models of equipment power profiles

This talk: updated results based on measured power profiles of real-world equipment

- Intel NIC [hays_01_1107]
- Cisco GSR [Chabarek, Infocom08]
- (would welcome additional data on equipment power consumption)

recap 11/07 meeting: overview

Goal: save energy without compromising performance

- achieving this will depend on:
 - appropriate hardware-level support for power management
 - higher-layer algorithms that invoke this support wisely
- our study
 - model two forms of hardware support
 - sleep states (low-power idle)
 - rate states (subset PHY (?))
 - design, evaluate higher-layer algorithms
 - explore how hardware support impacts savings/performance

recap 11/07 meeting: solutions

Presented two higher-layer algorithms that exploit hardware support for energy savings with controlled impact on performance

- 1. saving energy via sleeping: "buffer then burst"
 - sources buffer packets for up to Bms, then transmit buffered packets in a burst; switches sleep between bursts
 - buffer interval (**B** *ms*) controls the tradeoff between energy savings (*i.e.*, sleep time) and performance (*i.e.*, added delay)
- 2. saving energy via rate adaptation: monitor queue lengths
 - adapt rate if doing so doesn't add more than Dms delay to packets
 - delay bound (D ms) controls the savings-performance tradeoff

recap 11/07 meeting: conclusions

- simple, practical higher-layer algorithms are effective in navigating the savings *vs.* performance tradeoff
- both sleep and rate adaptation are useful, but in different circumstances
 - sleeping typically better at low network utilizations; rate-adaptation at higher utilizations
 - crossover utilization depends greatly on equipment power profile
- rate-adaptation with uniform rates (e.g., R/4, R/2, 3R/4, R) enables higher savings than with exponential rates (R/100, R/10, R)
- low system-wide transition times are critical to maintaining acceptable performance

Outline

- Evaluation methodology
- Equipment power profiles
- Test results:
 - 1. sleep vs. rate-adaptation for Intel NIC
 - 2. sleep vs. rate-adaptation for Cisco GSR
 - 3. impact of system transition times
 - 4. impact of asymmetric operation

Evaluation methodology

- packet-level simulation (ns2)
- using real network topologies and traffic workloads
 - Abilene backbone
 - Intel enterprise network
 (scale measured traffic to explore effect of network utilization)
- based on measured power profiles for real equipment
 - Intel NIC [hays_1107]
 - Cisco GSR router [Chabarek, Infocom08]
- metrics
 - % energy savings
 - performance: 98 percentile delay

Equipment Power Profiles

	Intel NIC (R=1Gbps)	Cisco GSR (R=10Gbps)	
p _{active} (R)	1217 mW	200+ 80W/linecard	
p _{idle} (R)	1010 mW	200+70W/LC	
p _{active} (R/10)	483 mW	200+32W/LC	
p _{idle} (R/10)	314 mW	200+22W/LC	
p _{active} (R/100)	504 mW	200+33W/LC	extrapolated
p _{idle} (R/100)	194 mW	200+13W/LC	J
p _{sleep}	65 mW	200W	chassis only

Sleep vs. Rate-adaptation: Intel NIC

Abilene backbone; transition time=1ms; rates=1G/100M/10Mbps

Sleep *vs.* Rate-adaptation: Cisco GSR

Abilene backbone; transition time=1ms; rates: 10G/1G/100Mbps

Sleep vs. Rate-adaptation: Cisco GSR

support for uniform rates (R/4, R/2, 3R/4,R) would greatly improve the savings from rate-adaptation

Impact of transition times

Traffic shaping is critical to achieving a good savings/performance tradeoff at higher system transition times