
100GE and 40GE PCS Overview

IEEE 802.3az November 2008 Dallas

Agenda

- 40GE/100GE Architecture
- PCS and MLD layer details
- Possible XL/CGMII Interface
- Alignment details
- Alignment performance metrics
- Clocking example
- Skew
- Summary

40GE/100GE Generic Architecture

2: For 40GE Backplane

Proposed 100GE/40GE PCS

• 10GBASE-R 64B/66B based PCS

Run at 100Gbps or 40Gbps serial rate

Includes 66 bit block encoding and scrambling

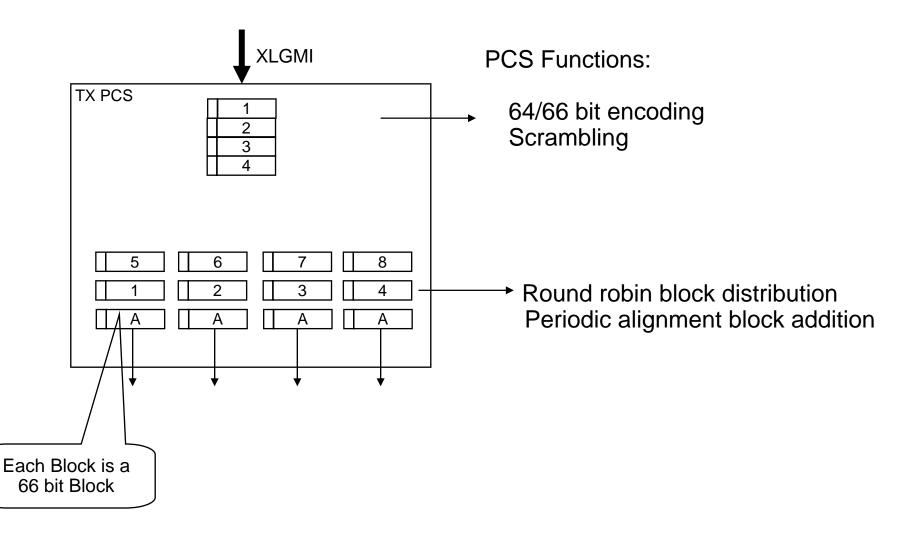
• Multi-Lane Distribution

Data is distributed across n virtual lanes 66 bit blocks at a time

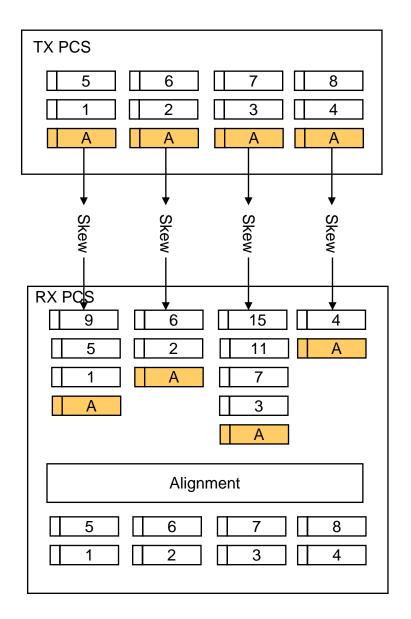
Round robin distribution

Periodic alignment blocks are added to each virtual lane to allow deskew in the rx PCS

• PMA maps n lanes to m lanes


PMA is simple bit level muxing

Does not know or care about PCS coding


• Alignment and static skew compensation is done in the Rx PCS only

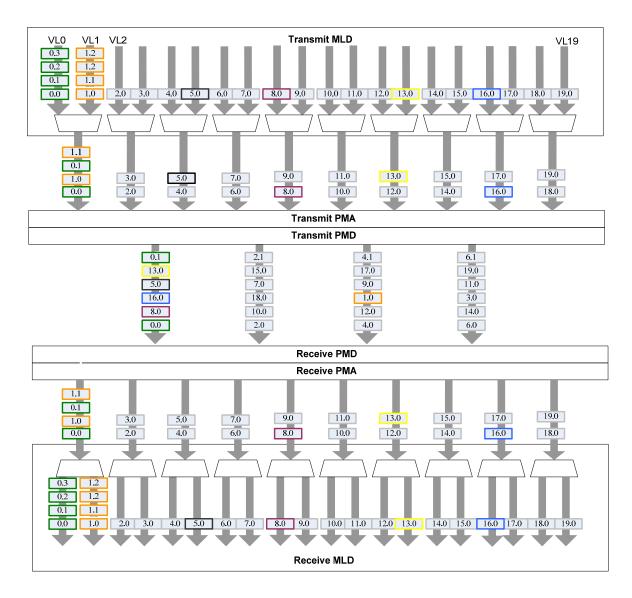
Striping Mechanism

This example is 40GE with 4 electrical and 4 optical lanes

Alignment Mechanism – 40GE Example

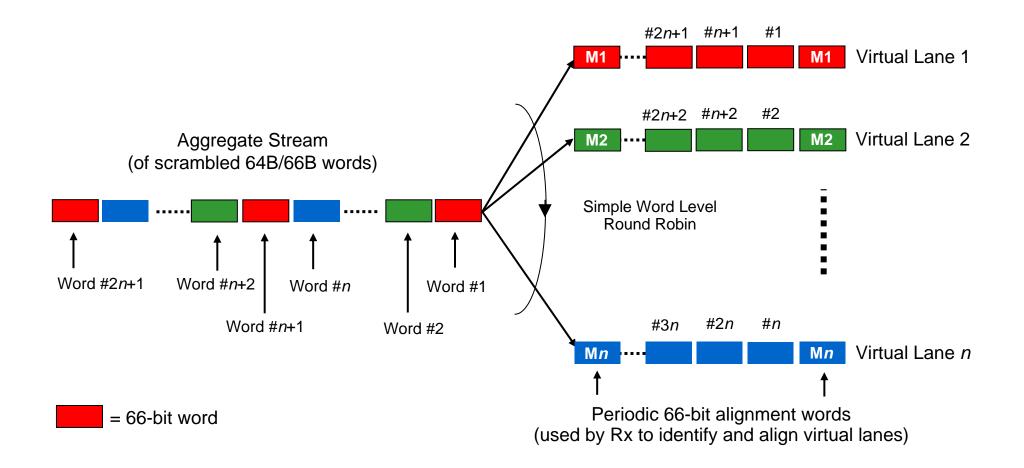
RX PCS Functions: Re-Align 66 bit blocks Remove the Alignment blocks Then descramble and decode

Key Concept – Virtual Lanes

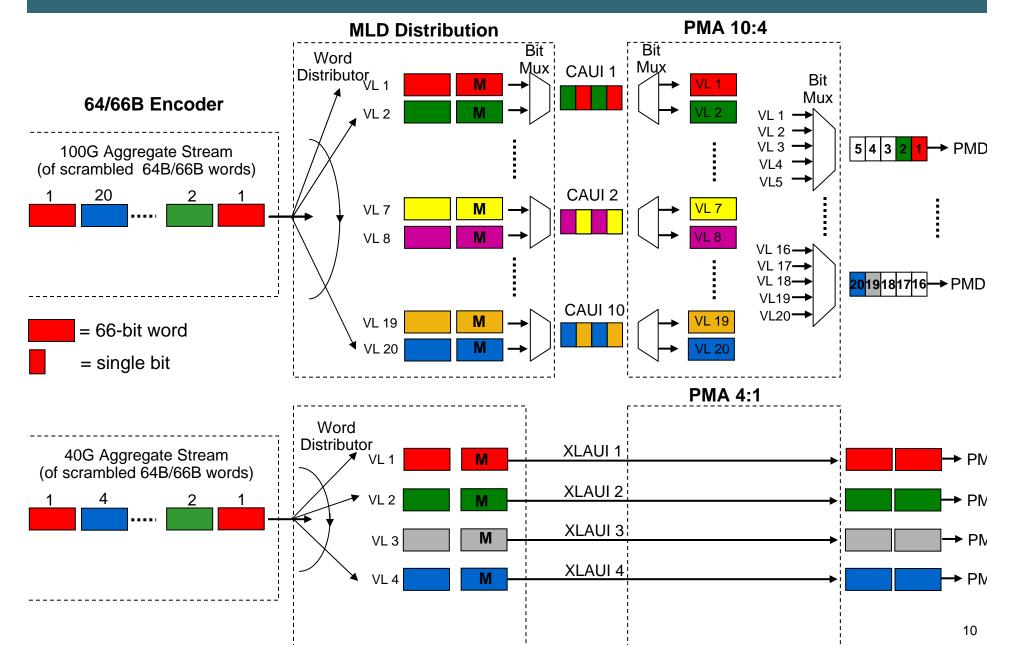

- Virtual lanes may or may not correspond to physical lanes
- Virtual lanes are created by distributing PCS encoded data in a round robin fashion, on a 66 bit block basis
- The number of virtual lanes generated is scaled to the Least Common Multiple (LCM) of the n lane electrical interface and the m lane PMD

This allows all data (bits) from one virtual lane to be transmitted over the same electrical and optical lane combination

This ensures that the data from a virtual lane is always received with the correct bit order at the Rx MLD


- The alignment markers allow the Rx PCS to perform skew compensation, realign all the virtual lanes, and reassemble a single 100G or 40G aggregate stream (with all the 64B/66B blocks in the correct order)
- Virtual lanes support a very simple mapping (blind bit level interleaving/disinterleaving) to electrical and optical interface of different lane widths (and lane widths that evolve over time, i.e. get narrower)

Bit Flow Through – 100GE 4 lane PMD



- 20 VLs
- 10 Electrical lanes
- 4 Optical lanes
- With Skew, VLs move around
- RX MLD puts things back in order

Virtual Lanes Generation .. Another view

Virtual Lanes Muxing .. Another view ©

How Many Virtual Lanes are Needed?

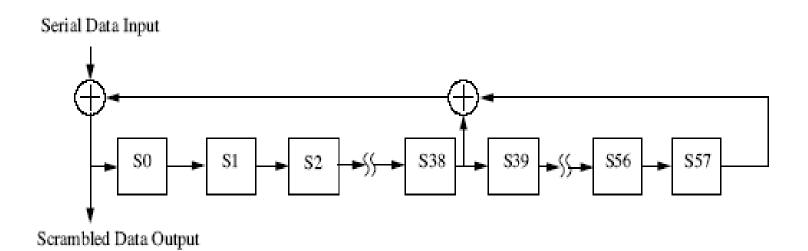
• 4 VLs For 40GE, this covers all of the possible combinations of lanes:

Electrical Lane Widths	PMD Lane Widths	Virtual Lanes Needed
4, 2, 1	4, 2, 1	4

• 20 VLs For 100GE, this covers all of the possible combinations of lanes:

Electrical Lane Widths	PMD Lane Widths	Virtual Lanes Needed	
10, 5, 4, 2, 1	10, 5, 4, 2, 1	20	

PCS Encoding


• Same 10GBASE-R PCS (Clause 49) encoding

Input Data	Sync	Block	Payload										
Bit Position: Data Block Format:	0 1	2									65		
D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ D ₇	01	Do	D1	D ₂	D ₃	1) ₄	D ₅	;	D ₆	D ₇		
Control Block Formats:		Block Type Field								I			
C ₀ C ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x1 e	C ₀	C1	C ₂	C3	C4		C_5	C ₆	C ₇]	
C0C1C2C3O4D5D6D7	10	0x2d	0 ,	01	0 ₂	0 ₃	04	D ₅	5	De	D ₇	<u> </u>	Not used
C, C, C, C, C,/S, D, D, D,	10	0,422	G,	C,	C ₂	Ç,		D _o	,	D.,	D,		since we have
0.0.0.0/0.0.0.0	10	0.00	D.			0				D.	D-		8B alignment
			-	-2	-3			-	,	0	'	1	
00 D1 D2 D3/04 D5 D6 D7	10	UX55	01	D ₂	D 3	00	04	05		De	07		
$S_0 D_1 D_2 D_3 / D_4 D_5 D_6 D_7$	10	0x78	D	D ₂	D ₃	1	04	Dg	5	D ₆	D7		
0 ₀ D ₁ D ₂ D ₃ /C ₄ C ₅ C ₆ C ₇	10	0x4b	D1	D_2	D ₃	00	C4	·	C ₅	C ₆	C ₇		
T ₀ C ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x87		C1	C ₂	C ₃	C4		C_5	C ₆	C7		Only block
$D_0 T_1 C_2 C_3 C_4 C_5 C_6 C_7$	10	0x99	Do		C ₂	C3	C4		C_5	C ₆	C ₇]	type used for ordered sets
${\rm D}_{\!0} {\rm D}_{1} {\rm T}_{2} {\rm C}_{3} / {\rm C}_{4} {\rm C}_{5} {\rm C}_{6} {\rm C}_{7}$	10	0xaa	Do	D		C ₃	C4		C_5	C ₆	C7		
D ₀ D ₁ D ₂ T ₃ /C ₄ C ₅ C ₆ C ₇	10	0xb4	Do	D	D ₂		C,	4	C_5	C ₆	C7]	
$D_0D_1D_2D_3/T_4C_5C_6C_7$	10	0xcc	D ₀	D	D ₂	[) ₃		C_5	C ₆	C7		
${\sf D}_0{\sf D}_1{\sf D}_2{\sf D}_3/{\sf D}_4{\sf T}_5{\sf C}_6{\sf C}_7$	10	0xd2	D ₀	D1	D ₂	0	3	D ₄		C ₆	C7		
${\sf D}_0{\sf D}_1{\sf D}_2{\sf D}_3\!/{\sf D}_4{\sf D}_5{\sf T}_6{\sf C}_7$	10	0xe1	D ₀	D ₁	D ₂	C	3	D ₄		D ₅	C7]	
${\sf D}_0 {\sf D}_1 {\sf D}_2 {\sf D}_3 {\sf D}_4 {\sf D}_5 {\sf D}_6 {\sf T}_7$	10	0xff	D ₀	D1	D ₂	[) ₃	D4		D5	D ₆]	

PCS Scrambling

• Identical 10GBASE-R PCS (Clause 49) scrambler

Runs at 40Gbps or 100Gbps now

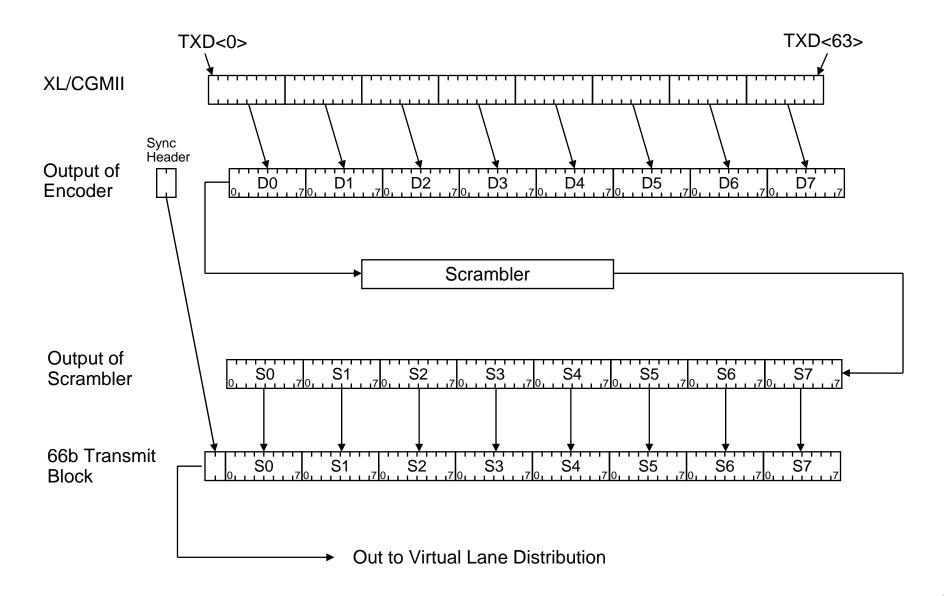
PCS Idle Deletion/Insertion rules

• Straight from 802.3ae (except for highlighted text):

Idle insertion or deletion occurs in groups of <u>eight</u> Idle characters

Idle characters are added following idle or ordered_sets

Idle characters are not added while data is being received


When deleting idles, the minimum IPG of <u>one character</u> is maintained

Sequence ordered_sets are deleted to adapt between clock rates

Sequence ordered_set deletion occurs only when two consecutive sequence ordered_sets have been received and deletes only one of the two

Only idles are inserted for clock compensation

PCS Bit Order

Alignment Proposal

- Send alignment on a fixed time basis
- Alignment word also identifies virtual lanes
- Sent every 16384 66bit blocks on each virtual lane at the same time

~216usec for 20 VLs @ 100G

~108usec for 4 VLs @ 40G

- It temporarily interrupts packets
- Takes only 0.006% (60PPM) of the Bandwidth
- Rate Adjust FIFO will delete enough IPG so that the MAC still runs at 100.000G or 40.000G with the interface running at 10.3125G

Alignment Word Proposal

Requirements:

- Significant transitions and DC balanced word is not scrambled
- Keep in 66 bit form, but no relation to 10GBASE-R is needed
- But why not keep it close? Because of the clock wander concerns
- Contains Virtual Lane Identifier

Proposed Alignment Word

10	VL	~VL

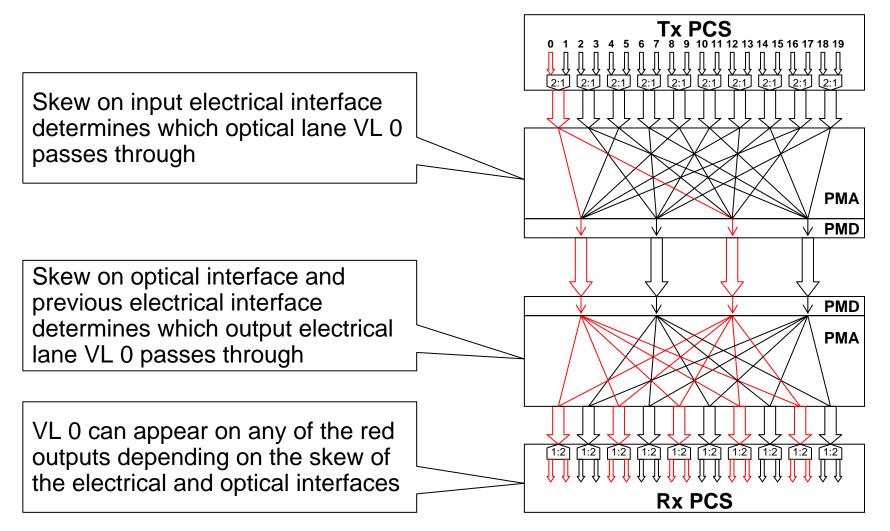
- This is DC balanced
- No relationship to the normal 10GBASE-R blocks
- Added after and removed before 64/66 processing
- Alignment block is periodic, no Hamming distance concerns with 64/66 block types

Alignment Word Proposal – 100GE

The encoding of the VL markers is as follows (based on $x^{58} + x^{39} + 1$ scrambler output):

VL Number	32 Bit encoding	VL Number	32 Bit encoding
0	C1,68,21,F4	10	FD, 6C, 99, DE
1	9D, 71, 8E, 17	11	B9, 91, 55, B8
2	59, 4B, E8, B0	12	5C, B9, B2, CD
3	4D, 95, 7B, 10	13	1A, F8, BD, AB
4	F5, 07, 09, 0B	14	83, C7, CA, B5
5	DD, 14, C2, 50	15	35, 36, CD, EB
6	9A, 4A, 26, 15	16	C4, 31, 4C, 30
7	7B, 45, 66, FA	17	AD, D6, B7, 35
8	A0, 24, 76, DF	18	5F, 66, 2A, 6F
9	68, C9, FB, 38	19	C0, F0, E5, E9

Note that data is played out in VL order, 0, 1, 2, ...19, 0, 1...


Alignment Word Proposal – 40GE

The encoding of the VL markers is as follows (based on $x^{58} + x^{39} + 1$ scrambler output):

VL Number	32 Bit encoding
0	C1,68,21,F4
1	9D, 71, 8E, 17
2	59, 4B, E8, B0
3	4D, 95, 7B, 10

Note that data is played out in VL order, 0, 1, 2, 3, 0...

Possible Paths Through the Link

Note: These possible paths are based on a 10:4 and 4:10 function based on round-robin distribution. Other arrangements which give different paths are possible.

Virtual Lane Location on the Receive Side

Due to how virtual lanes are multiplexed, and due to skew, and in order to be future proof:

All receivers must support receiving a transmitted virtual lane on any received virtual lane

This is true for 100GE and 40GE

Finding VL Alignment

- After reception in the rx MLD, you have x VLs, each skewed and transposed
- First you find 66bit alignment on each VL

Each VL is a stream of 66 bit blocks

Same mechanism as 10GBASE-R (64 valid 2 bit frame codes in a row)

• Then you hunt for alignment on each VL

Look for one of the 20 VL patterns repeated and inverted

- Alignment is declared on each VL after finding 2 consecutive non-errored alignment patterns in the expected locations (16k words apart)
- Out of alignment is declared on a VL after finding 4 consecutive errored frame patterns
- Once the alignment pattern is found on all VLs, then the VLs can be aligned

Alignment Performance Parameters – 100GE

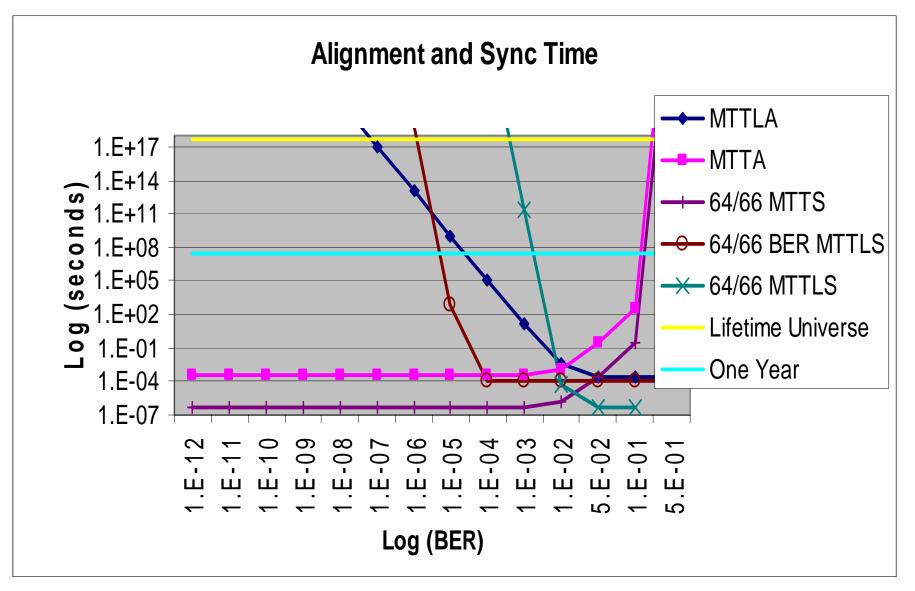
Mean Time To Alignment (MTTA)

Mean time it takes to gain Alignment on a lane or virtual lane for a given BER

Nominal time = 314usec

• Mean Time To Loss of Alignment (MTTLA)

Mean time it takes to lose Alignment on a lane or virtual lane for a given BER


- Probability of False Alignment (PFA) = 3 E-40
- Probability of Rejecting False Alignment (PRFA) = ~1
- Also have 64/66 sync stats on the graph for comparison

MTTS – Mean Time To Sync (64 non errored syncs in a row)


BER MTTLS – With the 125usec BER window, what is the Mean Time To Lose Sync

MTTLS - Mean Time To Lose Sync

Alignment Performance Parameters – 100GE

Clocking Example – 40GE

Skew Handling

- Both dynamic and static skew budgets need to be identified
- See other presentations for details

Summary

- Simple 10GBASE-R based PCS
- MLD layer to support multiple physical lanes/lambdas
- Complexity is low within the MLD layer
 - Simple block data striping
- Complexity in the optical module is low
 - Simple bit muxing even when m != n
- Based on proven 64B/66B framing and scrambling
- Electrical interface is feasible at 10x10G or 4x10G
- Allows for a MAC rate of 100.000G or 40.000G
 - Overhead very low and independent of packet size
- Supports an evolution of optics and electrical interfaces