VITESSE

Consider Parallel MMF XR Extended Reach Options

Frank Chang (Vitesse) Ali Ghiasi (Broadcom) June.20, 2008

YOUR PARTNER FOR SUCCESS

Introduction

From system vendors' perspective, there are system requirements for an option of longer parallel MMF reach at 200-250m.

- An extension of those 100m baseline proposal in pepeljugoski_01_0508, quite likely handled informatively as an annex.
- Concern about operational simplicity (gustlin_xr_01_0508.pdf).

There are 4 competing options under review by XR MMF Ad Hoc

- OM4 with tightened TX.
- Add CDR inside module
- EDC in host IC with linear RX
- KR FEC in host IC

It's time to examine various implementation considerations.

- > XR Ad Hoc is to prepare proposal comparison matrix in very details.
- ▶ <u>Key figure of merit</u> performance, optics cost, power consumption, latency.....

OM4 with tightened TX

Modules achieving extended pre-std OM4 reach via tightened Tx specs (jewell_xr_01_0508)

Parameter	OM3	OM4 (1)	Unit
Modal bandwidth as measured at 850nm ⁽²⁾	2000	4700	MHz-km
Power budget ⁽³⁾	8.3	8.3	dB
Operating distance	150	250	m
Channel insertion loss (4)	2.1	2.4	dB

(1) At this time, OM4 is not standardized.

- (2) Depends on launch conditions; simulations used a derated value of 4400 MHz-km at 840nm.
- (3) For further study
- (4) Connector loss under study

Could be simpler in implementation, but system cost increase as major concern

- Cost sources: module cost premium of 20%, new ribbon fiber link cost premium of 20%(?) (assume installation cost the same).
- Normal assumption is fiber link cost is typically 6-8x of module cost for 200m.
- ▶ So OM4 with tightened TX specs could introduce ~1.5 –2x of module cost which is significant!
- In contrast various chip solutions will leverage low-cost silicon.

CDR Inside Module

- CDR contained within the module help with crosstalk and reset jitter budget (latchman_xr_01_0508)
 - Media independent module interface.

- Major concern to increase the cost/power consumption of the module.
 - Typical extra power from CDR is about 200mW/250mW per direction.
 - May be tolerable for single-port SFP+ ports, thought particular prohibitive for multichannels like 10x10 solutions.
- Optics module cost/power increase could limit final port density...
 - Integrating CDR with module PMD could help, but historically being considered limited due to TOSA and ROSA optical packaging.

EDC In Host IC with Linear RX

- Analog EDC much simpler than LRM could provide longest possible reach among all 4 options (ghiasi_xr_01_0508)
 - ▶ Simpler adaptive EDC circuit such as 6T/2 FFE+2T DFE or well-established KR EQ.
 - ▶ EDC integrated into "bigger" host IC retimer/CDR, serdes, and/or ASIC.

- Maintain low-cost optics, while major concern to increase the host power consumption, complexity due to linear interface.
 - Integration of EDC circuit into host IC can facilitate further power reduction using e.g. 65nm CMOS.
 - Complexity can be leveraged by emerging SFP+ SR/LR deployments.

KR FEC In Host IC

KR FEC option transcodes 64/66B into 64/65B, reusing freed bits to provide 32-bit FEC code (2-2.5dB coding gain at 10⁻¹²) (petrilla_xr_01_0508)

- ▶ Corrects raw <4.4x10⁻⁸ BER to 10⁻¹² BER, OR <10⁻¹² BER to 10⁻¹⁸ BER (for carrier req.)
- Simpler implementation by reuse of KR FEC, major concern on latency of 0.3-0.5us.
 - Data centers require low latency as competitive advantage.

Recommendations

EDC in host IC with linear RX better support the longest XR link that is possible.

- ▶ Simpler EDC circuit in terms of 6T/2 FFE+2T DFE or well-established KR EQ.
- Provide margins to help optics mfg yield, its adaptation simplify system tune-up.
- Leverage SFP+ deployment with EDC adaptation and
 - Current 10GbE SFP+ SR (or later LR) deployment are using EDC as host.
- Clear roadmap to address host IC power concerns by deep-node CMOS.
- Support 220-300m reach with OM3 link.
 - Compatible with limiting and linear module as well as 10m copper.
 - NO extra cost added using linear I/F with EDC-based host.
- KR FEC could be optional should address the needs where higher latency is tolerable.
 - KR FEC has few deployment in field for now, but already exist as optional in many of-theshelf KR PHYs.
 - One benefit could be to provide 10⁻¹⁵ BER capability required by Carrier Ethernet.
 - Believe 40G/100G Ethernet will eventually provide end-to-end Carrier Ethernet