

Sensitivity and Random Jitter Mike Dudek August 10 2008

- For system budgeting it has been suggested that jitter is the key parameter for link closure in high speed limiting links.
- The assumption is that the receiver Rj contribution is equal to 1.0UI at the intrinsic sensitivity and reduces in proportion to the OMA.
- This presentation describes practical test results to evaluate this suggestion.

Experimental set up

- The Circadiant SRS tester was set to 2^31-1 with no degradation and the BER versus OMA was measured
- The Circadiant SRS tester was changed to a square wave pattern and the Jitter was measured on the Oscilloscope at the same OMA values (but over a wider range).

BER v OMA.

Jitter versus OMA

The Random Jitter at the Sensitivity point is less than 0.6UI !!!!!!

Conclusions.

- The Random Jitter at the measured sensitivity threshold is below 0.6UI
- The Jitter not equaling 1.0UI at the sensitivity point shows that this is not a true "intrinsic sensitivity test". Likely degradations are due to set up/hold times in the Circadiant error detector, and vertical eye closure and RIN in the Tx. (ie "No degradation" is really "no intentional additional degradation")
- The 40/100G spec does not need 2.3dB of additional power budget above typical measured sensitivity for random jitter allocation.
- An SFP+ only has approx 0.6UI of jitter at an OMA of -15dBm.

Jitter versus OMA linearized.

 In order to investigate this further the graph was linearized by changing the horizontal axis to 1/OMA with OMA in mW

- The Random Jitter does follow an approximatelty linear curve versus 1/OMA
- The Jitter at the intercept that is equivalent to infinite OMA implies that there is a jitter source that is not related to the intrinsic sensitivity. A combination of the scope timebase jitter and the Circadiant Tx jitter are the likely sources.

Further linearization.

This "none sensitivity related jitter" was RSS'd out of the jitter to determine how well the sensitivity related jitter follows theory. (see below graph). The resulting graph is a very good fit to the linear curve indicating that the theory is sound.

9