

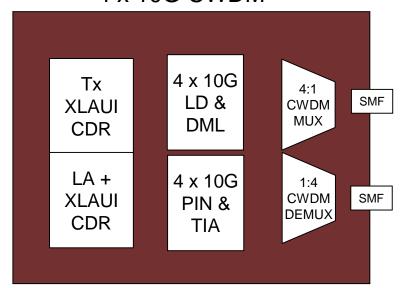
10km SMF 40GbE PMD Analysis

Ryan Latchman, Gennum Corp. ryan.latchman@gennum.com

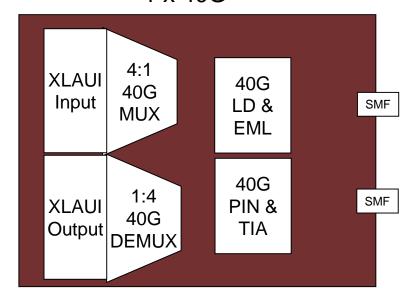
Hirotaka Oomori, Sumitomo Electric Industries oomori@sei.co.jp

Agenda

- 1. Introduction
- 2. Comparing 4 x 10G with 1 x 40G
- 3. Analyzing 1 x 40G Link Budget
- 4. Analyzing 4 x 10G Link Budget
- 5. Proposal



Introduction



- There are two physical layer proposals on how to communicate 10km 40GbE
 - 4 x 10G leveraging CWDM multiplexing
 - 1 x 40G leveraging 40G Serializer / De-serializer
- 4 x 10G Characteristics:
 - Electrical I/O: 4 x 10G
 - Optical I/O: 4 x 10G (4 wavelengths)
 - 1UI = 97ps
- 1 x 40G Characteristics:
 - Electrical I/O: 4 x 10G
 - Optical I/O: 1 x 40G
 - -101 = 24ps

4 x 10G CWDM

1 x 40G

Comparing XLAUI CDRs with 40G SERDES

Jewell_02_0508 with modifications in red

40GbE CWDM vs. Serial Power Comparison

40G 10km CWDM	Y2008 Power (W)	Y2011 Power (W)	40G 10km Serial	Y2008 Power (W)	Y2011 Power (W)
DML TOSA/Mux	0	0	EML TOSA/TEC	1.5	1.0
4X DML Driver	3.0	2.0	EML Driver	0.8	0.6
2 x XLAUI CDR	<2.0	<1.0	40G SERDES	>7	? **
4X PIN/TIA ROSA	1.0	0.7	PIN/TIA	0.4	0.3
Total Power	<6.0	<3.7	-	>9.7	: ?
Ratio to CWDM	1	1	-	1.6	?

^{*} SiGe

**CMOS

40G SERDES Power: SFI-5 40G SERDES – SFI-5 interface power consumption + XLAUI interface power consumption

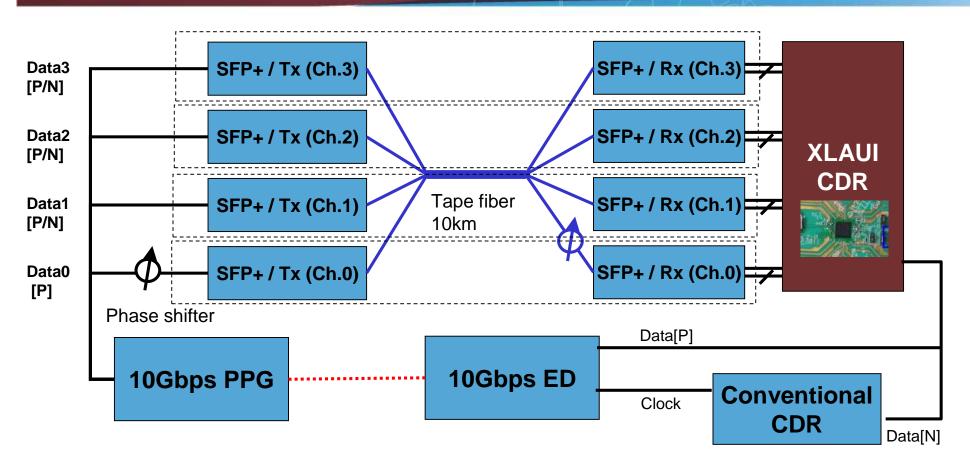
IEEE 802.3ba Task Force - May 13-15, 2008 - Munich, Germany

Analyzing 40GbE Serial Link Budget

Jewell_02_0508 with modifications in brown

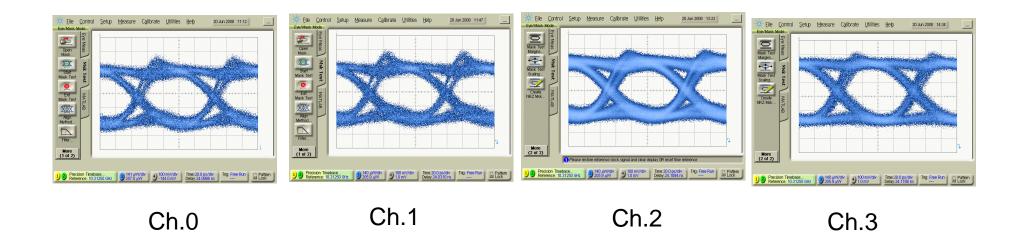
40GbE serial link budget is feasible Link Power Budget and Penalties Description Operating Distance (m) iber Modal BW (MHz-km) Wavelength Range (nm) 1300-1324 Link Budget 8.7dB Link Power Budget (dB) 8.70 8.70 4:1 1310 6.2 Channel Insertion Loss (dB) MUX EA-DFB 2.19 Link Power Penalties (dB) Worst-case margin Ptotal central (dB) 6.43 0.26dB Unallocated Margin (dB) PIN-PD 1:4 Pisi (dB) **DMUX** TIA Transmit Characteristics Description Signal Speed (Gbaud) Lower ER can be used Wavelength (nm) w/ higher Avg Pwr Trise / Tfall (20%-80%) (ps) Max RMS Spectral Width (nm) 10 ps Basics Input= Bold Ts(20-80) Max Avg Launch Power (dBm) 4.0 7.04 Ts(10-90) Q: 0.7° 15 ps Min Avg Launch Power (dBm) Base Rate= 41250 MBd Min Optical Mod. Amp. (mW) 1.736 RIN at MinER -134.6 dB/Hz Transmitter Min Extinction Ratio (dB) Wavelength Ud 1300 nm Max RIN (dB/Hz) Uw (see notes Det.Jitter 0.10 nm 1.0 ps inc. Min Disp Wavelength (nm) Tx pwr OMA= 2.395 dBm DCD_DJ= 1 ps TP3 8.20 dB Receive Characteristics Min. Ext Ratio= 0.71 dBm MPN k(OMA) 0 "Worst"ave.TxPwr Description Ext. ratio penalty Signal Speed (Gbaud) 41.2500 41.2500 1.32 dBo Tx eye height 300-1324 Wavelength Range (nm) 1300-1324 -12 dB Rx Bandwidth (MHz) ModalNoisePen 0 dB Receive Sensitivity (dBm) -4.9752 -4.9752Min Optical Mod. Amp. (mW) Rx sensitivity (OMA) -6.3dB → PIN Min Optical Mod. Amp. (dBm) IEEE 802.3ba Task Force - May 13-15, 2008 - Munich, Germany

Comparing 40GbE Serial with SONET OC-768


	40GbE Serial Link Budget Feasibility	SONET OC-768
Jitter Generation / Output Jitter	1ps Deterministic Jitter (41mUI)	3.5ps measured in the 16MHz – 320MHz band (140mUI)
Rise / Fall Time (20%, 80%)	10ps	10ps

40GbE Serial Link Budget Feasibility does not represent an opportunity to relax 40G specifications

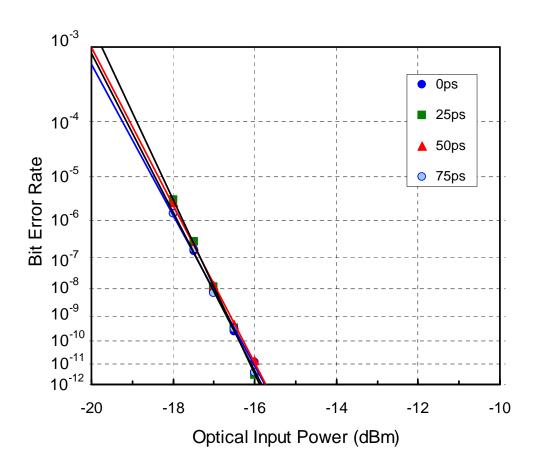
4 x 10G Link Budget Experimental Setup



- ✓ Output power from the SFP+ Tx is -3.32, -3.88, -3.61, -3.67dBm
- ✓ To generate clock output, conventional CDR was used.

SUMITOMO ELECTRIC

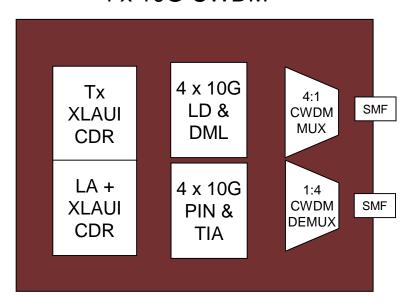
Optical Output Wave Form



- √ 4.5dB Extinction Ratio
- √ 1.31um band wavelength. (1315.62nm, 1316.02nm, 1314.84nm, 1314.98nm)
- **SUMITOMO ELECTRIC**

Experimental Results (BER after 10km fiber)

All four channels were operated.



Recommendation:

- 4 x 10G is the appropriate choice for 802.3ba
 - 10G technology is already well proven
 - Lower cost option for years to come since 10G technology can (has)
 been amortized across 10GbE
 - Lower power for years to come

4 x 10G CWDM

