100GE 10km SMF WDM Grid Alternatives

IEEE 802.3ba Task Force 18-20 March 2008 Chris Cole Bernd Huebner

chris.cole@finisar.com bernd.huebner@finisar.com **Finisar** 18⁻imisar

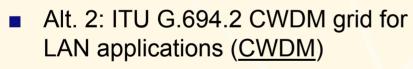
Supporters

- Ghani Abbas Ericsson
- Arne Alping Ericsson
- Pete Anslow Nortel Networks
- Ralf-Peter Braun Deutsche Telekom
- Martin Carroll Verizon
- Dan Dove Dove Networking for HP Procurve
- Jörg-Peter Elbers Adva
- Ali Ghiasi Broadcom
- Larry Green Ixia
- Hideaki Horikawa Oki
- Osamu Ishida NTT
- John Jaeger Infinera
- Jack Jewell JDSU
- John Johnson CyOptics
- Scott Kipp Brocade
- Shoukei Kobayashi NTT
- Arlon Martin Kotura

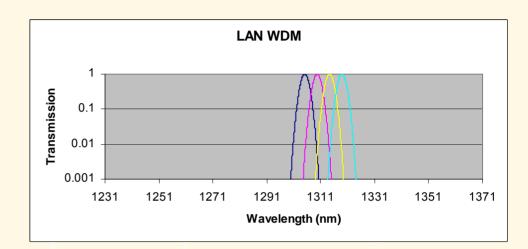
- Jeffery J. Maki Juniper Networks
- Kengo Matsumoto Sumitomo/ExceLight
- Andy Moorwood Infinera
- David Ofelt Juniper Networks
- Thomas Paatzsch Cube Optics
- Tom Palkert Luxtera
- Shashi Patel Foundry Networks
- Drew Perkins Infinera
- Ted Seely Sprint
- Ingo Smaglinski Cube Optics
- Henk Steenman AMS-IX
- Sashi Thiagarajan Ciena
- Brad Turner Juniper Networks
- Randy Whitney Verizon
- Ted Woodward Telcordia
- Kazuomi Yoshida Mitsubishi

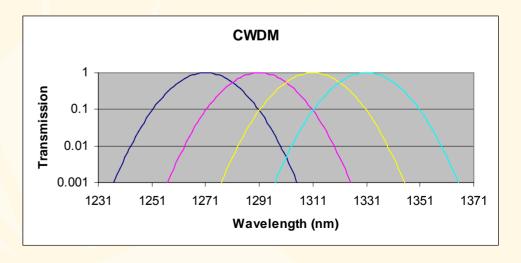
Finisar

Ryoko Yoshimura – NEL

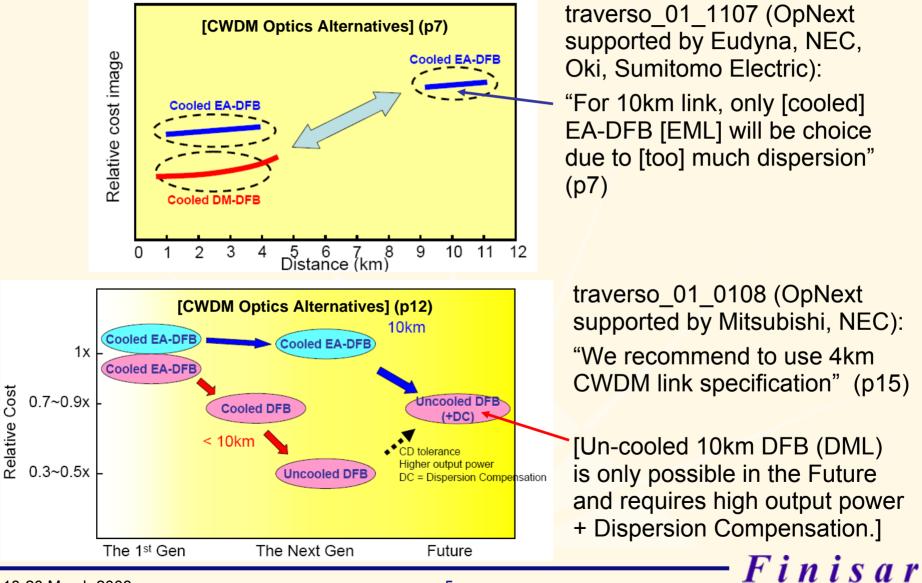

10km SMF WDM Alternatives Outline & Summary

1 st Gen LAN WDM PMD	1 st Gen CWDM PMD
Uses cooled EML with >90% chip yield on \geq 4nm grid due to λ tuning only	Uses cooled EML with ~100% chip yield on 20nm grid due to λ tuning only
Lower PMD cost (higher overall EML yield) due to 1.5dB less output power	Higher PMD cost (lower overall EML yield) due to 1.5dB more output power
Lower unit cost by sharing 40km optics development amortization and volume	Higher unit cost because of separate optics from the 40km reach
Next Gen LAN WDM PMD	Next Gen CWDM PMD
Significant cost reduction potential due to use of cooled DML	Limited cost reduction potential due to 10km dispersion preventing DML use
Significant cost reduction potential due to monolithic optics integration	Limited cost reduction potential due to use of discrete optics only


Recommend LAN WDM Grid for 100GE 10km SMF


10km SMF WDM Grid Alternatives

- Alt.1: ITU G.694.1 widely spaced DWDM grid for LAN applications (LAN WDM)
 - 1305 1319nm span
 - 193.1THz base
 - 2 4nm (400GHz 800GHz) spacing (800GHz plotted)
 - 1 2.5nm width



- 1264 1338nm span
- 20nm spacing
- 13nm width

10km SMF WDM Optics Alternatives & Feasibility

10km SMF WDM Cooled EML Yield Comparison

1st Gen 10km SMF LAN WDM or CWDM optics will be cooled EMLs

LAN WDM 10km Optics 1st Gen cooled EML yield due only to wavelength tuning

johnson_01_0108 (CyOptics):

[wavelength] " tuning of \pm 7°C allows laser wavelength range of \pm 1.8nm or \pm 2 σ of DFB capability (>90% yield) " (p7) [quantification based on presented process data and wavelength tuning analysis (p6)]

traverso_01_0108 (OpNext):

[qualitatively a yield loss due to wavelength tuning graphically shown, but no process data or analysis presented to quantify the yield loss] (p6)

CWDM 10km Optics 1st Gen cooled EML yield due only to wavelength tuning

■ johnson_01_0108 (CyOptics):

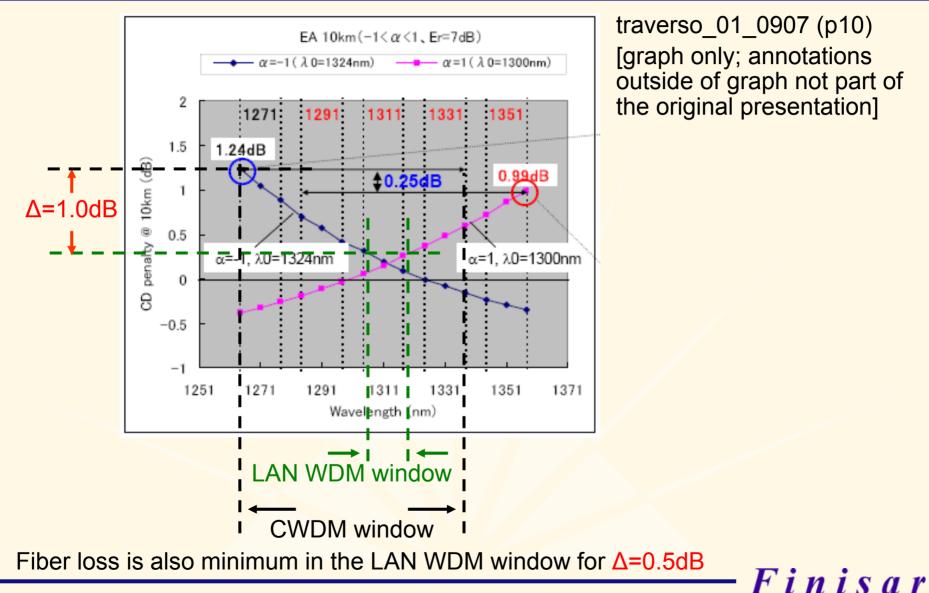
"For CWDM, wavelength tolerance is \pm 5nm [\pm 6.5nm], so yield is close to 100% for wavelength alignment alone" (p6)

traverso_01_0108 (OpNext):

"No wavelength yield [loss], ... [no] tuning required" [~100% yield due to wavelength tuning graphically shown] (p6)

Finisar

(Same yield comparison applies to WDM DML optics)


10km SMF Propagation Properties

10km G.652 A&B SMF Max dispersion and Max fiber loss

- LAN WDM (4nm spacing) (1306 1318nm EML¹ or DML² grid)
 λ = 1318nm (worst case EML or DML λ)
 - Max Dispersion (1319nm) = 18ps/nm
 - Max Loss (1319nm) = 4.2dB
- CWDM (20nm spacing) (1271 1331nm EML or DML grid)
 - λ = 1271nm (worst case EML λ)
 - Max Dispersion (1264.5nm) = -59ps/nm (330% of LAN WDM)
 - Max Loss (1264.5nm) = 4.7dB (0.5dB more than LAN WDM)
 - λ = 1331nm (worst case DML λ)
 - Max Dispersion (1337.5nm) = 33ps/nm (183% of LAN WDM)
 - Max Loss (1337.5nm) = 4.3dB (0.1dB more than LAN WDM)

¹ EML: Electro Absorption Modulator (DFB) Laser (= EA-DFB) ² DML: Direct Modulation Laser (= DFB)

10km SMF cooled EML Dispersion Penalty

10km SMF OMA Link Budgets

10km SMF 25G TP2 → TP3 Entries in dB	CWDM Cooled EML $\lambda = 1271$ nm ER = 7dB	LAN WDM Cooled EML λ = 1318nm ER = 7dB	CWDM Uncooled DML $\lambda = 1331$ nm ER = 3.5dB	LAN WDM Cooled DML $\lambda = 1318$ nm ER = 4.5dB
Fiber Loss (G.652 A&B)	4.7	4.2	4.3	4.2
Connector loss	2.0	2.0	2.0	2.0
Dispersion Penalty	1.3 ¹	0.3 ²	3.1 ³	1.3 ⁴
Other Penalties	0.7	0.7	0.7	0.7
Total budget	8.7 Δ=1.5dB ⁵	7.2	10.1 ∆ =1.9dB	8.2

¹ traverso_01_0907, EML: λ = 1264.5nm, chirp α = -1.0, 10km (p10)

² traverso_01_0907, EML: λ = 1319.0nm, chirp α = 1.0, 10km (p10)

- ³ traverso_01_0907 (p11), isono_01_1107 (p6), DML: λ = 1337.5nm, chirp α = 3.5, 10km
- ⁴ traverso_01_0907 (p13), isono_01_1107 (p6), DML: λ = 1357.5nm, chirp α = 3.5, 4km

⁵ EML optimized CWDM grid has Δ =1.2dB (λ = 1351nm)

18-20 March 2008

10km SMF OMA Power Budgets

10km SMF	CWDM	LAN WDM	CWDM	LAN WDM
25G λs	Cooled EML	Cooled EML	Un-cooled DML	Cooled DML
Power in dBm (OMA)	λ = 1271nm ¹ ER = 7dB	λ = 1318nm ER = 7dB	λ = 1331nm ER = 3.5dB	λ = 1318nm ER = 4.5dB
TX Min \rightarrow Max	3.5 → 6.5	2.0 → 5.0	4.9 → 7.9	3.0 → 6.0
TP2 TX Min 2.5dB Mux loss	1.0 ▲ =1.5dB	-0.5	2.4 ★ Δ=1.9dB	0.5
Link Budget (dB)	8.7	7.2	10.1	8.2
TP3 RX Min 2.5dB DeMux loss	-7.7	-7.7	-7.7	-7.7
RX Min (with 1dB crosstalk penalty)	-10.2	-10.2	-10.2	-10.2
TP2 4 λ TX Avrg. Max (= 1 λ TX Avrg. Max + 6dB)	8.8	7.3	12.6 ¹ (>12.0)	9.7 ¹
¹ Average Power	<mark>Δ = 2.9dB</mark>			– Finisar
18-20 March 2008		10		- Г і п і S и I

10km SMF CWDM DML Power Budget Problems

Parameter	10km (Ref)	
	Min.	Max.
Tx output power (dBm)	+1.8 (OMA)	
Extinction ratio (dB)	3.5	
Power budget (dB)	9.3	
Connector loss (dB)	2.0	P _O limited by Eye Safety
Fiber loss (dB)	4.2	Lyc Galety
Allocation for penalties (dB)	3.1	
Rx sensitivity (dBm)	-7.5 (OMA)	

traverso_01_0108: DML, λ = 1337.5nm, chirp α = 3.5, (p14)

- traverso_01_0108 (OpNext supported by Mitsubishi, NEC): CWDM DML power budget (p14) is similar to one on p10 of this presentation and has zero margin for 12dBm Class 1 Eye Safety Limit and requires high output power laser.
- isono_01_0108 (Fujitsu): after addition of 2dB for connector loss CWDM DML power budget (p3) is similar to one on p10 of this presentation and exceeds 12dBm Class 1 Eye Safety Limit and requires high output power laser.

10km SMF LAN WDM & CWDM PMD Costs

- 1st Gen 10km 4x25G cooled 1310nm EML PMD cost (yield) comparison
 - LAN WDM Min TX OMA: 2.0dBm
 - CWDM Min TX OMA: 3.5dBm Δ =1.5dB yield margin
 - EML reference 1: 10GBASE-ER 40km Min TX OMA: -1.7dBm⁻¹
 - EML reference 2: 40G VSR 2km Min TX OMA: 1.7dBm ²
 - LAN WDM PMD cost (yield) is significantly lower then CWDM PMD cost
- Possible Next Gen 10km 4x25G 1310nm DML PMD cost (yield) comparison
 - CWDM DML is not feasible today (CWDM LAN WDM OMA = Δ =1.9dB)
 - The only feasible CWDM DML must have properties similar to an EML:
 - low chirp
 - high output power
 - high extinction ratio
 - all the above when hot to enable un-cooled operation
 - No such DML exists today, so there is no process data for cost comparison

¹ IEEE 802.3ae Standard, 10G, 1550nm, ER = 3dB (typical spec: OMA = 2.0dBm, ER = 8dB) ² ITU-T G.693 application, 40G, 1550nm, ER = 8.2dB *Finis ar*

10km SMF Optics Sharing with 40km

LAN WDM 10km Optics shared development cost and volume with 40km

- cole_01_0907 (Finisar supported by CyOptics, NTT, Oki, Eudyna, Mitsubishi, Sumitomo Electric, NEL)
 - "Amortization cost is reduced by sharing development expenses with 40km reach." (p7)
 - "Unit cost is reduced through economies of scale by sharing volume between all reaches (... 10km, 40km.)" (p7)
- jiang_01_0507 (JDSU)
 - "Increase the total volume base with the combined 10km & 40km market demand." (p10)
- johnson_01_0108 (CyOptics)
 - "Developing a single TOSA that can serve all reaches is critical to reducing unit cost and initial time to market
 - Single product development reduces cost and time to market
 - Shared volume for all reaches reduces unit cost" (p12)
- CWDM 10km Optics development cost and volume
- 40km optics use LAN WDM (can not use CWDM because of dispersion and noise bandwidth,) so are different from 10km CWDM optics. Require different TOSA and ROSA with no shared development or volume
 Finis ar

10km SMF Monolithic Optics Integration

LAN WDM Optics monolithic integration low cost potential

 cole_01_0907 (Finisar supported by CyOptics, NTT, Oki, Eudyna, Mitsubishi, Sumitomo Electric, NEL)

"LAN WDM 6nm to 12nm band results in significant low cost potential through manufacturing monolithic laser arrays, [and] ultimate low cost potential through monolithic integration of Mux/DeMux." (p7)

nagarajan_01_1107 (Infinera)

"To achieve low cost – simple high yield processes are required, >40nm band gap shift (400GHz channel spacing) for optimal performance ... " (p5)

johnson_01_0108 (CyOptics)

"LAN WDM enables simple, robust DFB and EAM [monolithic] integration" (p8)

CWDM Optics monolithic integration low cost potential

nagarajan_01_1107 (Infinera)

"Larger wavelength (e.g. CWDM) are more complex/costly [and] push the limit of integration technology" (p4)

Finisar

 CWDM requires discrete EML and Mux/Demux optics as integration uses expensive non-standard process steps that do not lead to overall cost savings.

Appendix: LAN WDM 10km & CWDM 4km Dispersion

- 10km G.652 A&B SMF LAN WDM (1306 1318nm grid, 4nm spacing)
 - Max Dispersion (1319nm) = 18ps/nm (worst case EML or DML)
- 4km G.652 A&B SMF CWDM (1271 1331nm grid, 20nm spacing)¹
 - Max Dispersion (1266nm) = -23ps/nm (worst case EML)
 - Max Dispersion (1336nm) = 13ps/nm (worst case DML)

SMF Reach (25G) TP2 \rightarrow TP3 Entries in dB (traverso_01_0907)	EML Dispersion Penalty Worst case λ chirp $\alpha = \pm 1.0$ (p10)	DML Dispersion Penalty Worst case λ chirp α = 3.5 (p13)
10km LAN WDM	0.3	1.3
4km CWDM	0.5	0.8

LAN WDM 10km SMF has similar Dispersion Penalties to CWDM 4km SMF

¹ CWDM 4km + High Loss SMF objective proposed in traverso_01_0108 (p12 -15)