40GBASE-KR4 backplane PHY proposal

Richard Mellitz & Ilango Ganga Intel Corporation

Mar 18, 2008

03/18/2008

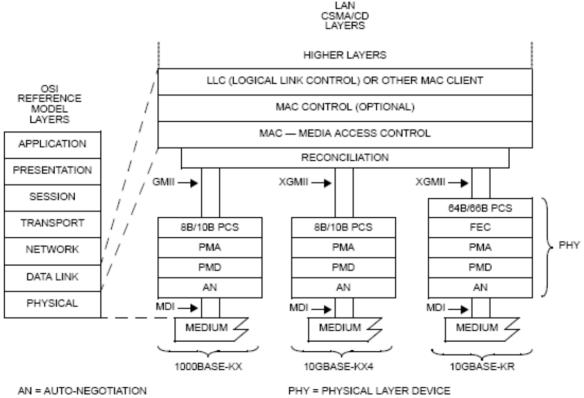
Contributors & Supporters

- Andre Szczepanek
- Arthur Marris
- Pravin Patel
- Chris DiMinico
- Scott Kipp
- Tom Palkert
- Jeff Cain

Texas Instruments Cadence Design Systems **TBM** MC Communications Brocade Luxtera **Cisco Systems**

Key messages

- Proposal to adopt 10GBASE-KR as a baseline for specifying 40GBASE-KR4 with the following changes
 - Backplane layer diagram (Clause 69)
 - Leverage 10GBASE-KR PMD for operation over 4 lanes (Clause 72)
 - Auto-Negotiation (Clause 73)
 - Forward Error correction (Clause 74)


Considerations for 40G BPE PHY

- To be architecturally consistent with the Backplane Ethernet layer stack illustrated in Clause 69
- To interface to a 4-lane backplane medium with interconnect characteristics recommended in IEEE Std 802.3ap (Annex 69B)
 - Most generation 2 blade systems are built with 4-lanes (10Gbaud KR ready)
- Leverage 10GBASE-KR technology/specifications (Clause 72 and Annex 69A) to define 40GBASE-KR4 PHY:
 - 64B/66B block coding
 - Startup protocol (per lane)
 - Signaling speed 10.3125Gbd (per lane)
 - Electrical characteristics
 - Test methodology and procedures
- Optional FEC sublayer
 - PCS to interface to optional FEC sublayer consistent with Clause 74 specification
- Compatible with Backplane Ethernet Auto-Neg (Clause 73)
 - Enhancement to indicate 40GbE ability

Backplane Ethernet overview

- IEEE Std 802.3ap-2007 Backplane Ethernet defines 3 PHY types
 - 1000BASE-KX : 1-lane 1 Gb/s PHY (Clause 70)
 - 10GBASE-KX4: 4-lane 10Gb/s PHY (Clause 71)
 - 10GBASE-KR : 1-lane 10Gb/s PHY (Clause 72)
- Forward Error Correction (FEC) for 10GBASE-R (Clause 74) optional
 - Optional FEC to increase link budget and BER performance
- Auto-negotiation (Clause 73)
 - Auto-Neg between 3 PHY types (AN is mandatory to implement)
 - Parallel detection for legacy PHY support
 - Automatic speed detection of legacy 1G/10G backplane SERDES devices
 - Negotiate FEC capability
- Clause 45 MDIO interface for management
- Channel
 - Controlled impedance (100 Ohm) traces on a PCB with 2 connectors and total length up to at least 1m.
 - Channel model is informative (Annex 69B)
- Interference tolerance testing (Annex 69A)
- Support a BER of 10⁻¹² or better

Existing backplane architecture

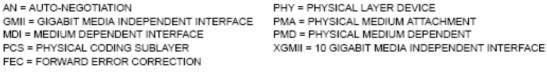


Figure 69–1—Architectural positioning of Backplane Ethernet

03/18/2008

Proposed backplane architecture with 40GbE

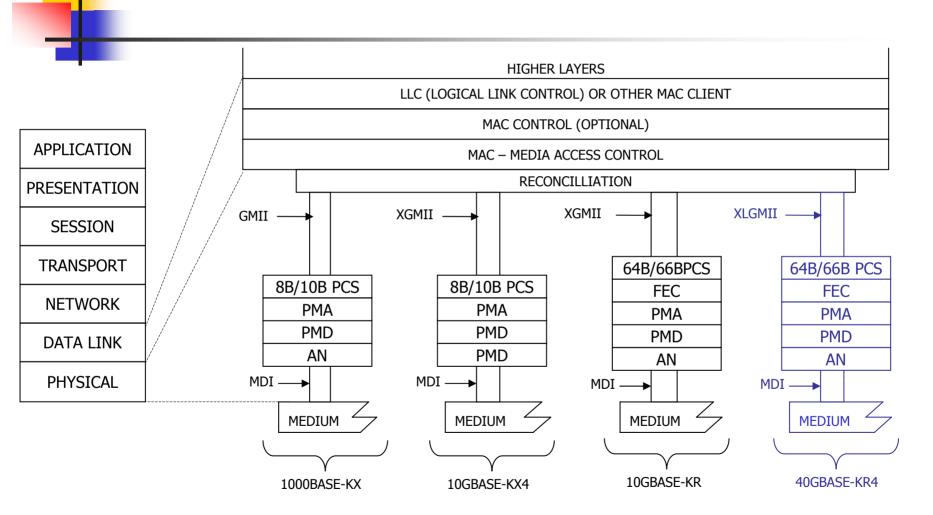


Figure 69-1 Architectural positioning of Backplane Ethernet

03/18/2008

Proposed Auto-Neg changes

• IEEE Std 802.3ap defines Auto-Negotiation for backplane Ethernet PHYs

- AN uses DME signaling with 48-bit base pages to exchange link partner abilities
- AN is mandatory for 10GBASE-KR backplane PHY, negotiates FEC ability
- Proposal for 40GBASE-KR4 (Ability to negotiate with other 802.3ap PHYs)
 - Add a Technology Ability bit A3 to indicate 40GbE ability (A3 is currently reserved)
 - No changes to backplane AN protocol or management register format
 - No change to negotiate FEC ability, FEC when selected to be enabled on all 4 lanes
 - AN mandatory for 40GBASE-KR4, no parallel detect required for 40G

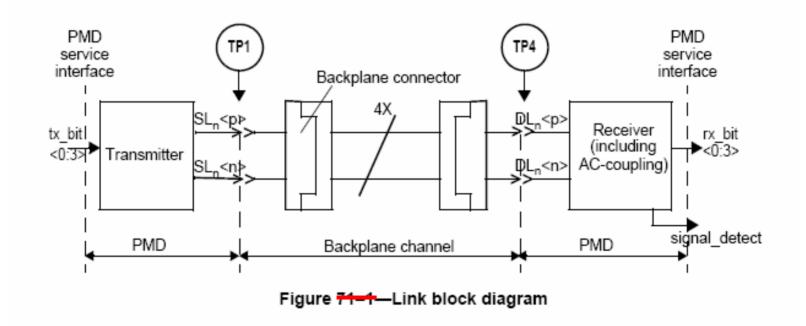

Bit	Technology			
A0	1000BASE-KX			
A1	10GBASE-KX4			
A2	10GBASE-KR			
A3 through A24	Reserved for future technology			
A3	40GBASE-KR4			
A4 through A24	Reserved for future technology			

Table 73–4—Technology Ability field encoding

Proposed 40GBASE-KR4 PMD

- Leverage 10GBASE-KR (Clause 72) to specify 40GBASE-KR4 with following changes for 4 lane operation
 - Change KR Link diagram for 4 lanes (similar to KX4)
 - Change KR PMD service interface to support 4 logical streams (similar to KX4)
 - Change PMD control variable mapping table to include management variables for 4 lanes

40GBASE-KR4 Link block diagram

Service Interfaces for KR4 PMD

- PMD Service Interface
 - Service interface definition as in Clause 72
 - Specify 4 logical streams of 64B/66B code groups from PMA
 - PMD_UNITDATA.request (txbit<0:3>)
 - PMD_UNITDATA.indication (rxbit<0:3>)
 - PMD_SIGNAL.indication (SIGNAL_DETECT<0:3>)
 - "While normally intended to be an indicator of signal presence, is used by 10GBASE-KR to indicate the successful completion of the start-up protocol". Enumerate for 4 lanes
- AN Service Interface (Same as Clause 73)
 - Support AN_LINK.indication primitive
 - Requires associated PCS to support this primitive

PMD MDIO function mapping (1)

- Support management variables for 4 lanes
- Include lane by lane Transmit disable

MDIO control variable	PMA/PMD register name	Register/ bit number		PMD control variable	
Reset	Control register 1	-1.0.1	⊱	PMD_reset	
Global Transmit Disable	Transmit disable register	1.9.0		Global_PMD_transmit_disable	
Transmit disable 3	Transmit disable register	1.9.4		PMD_transmit_disable_3	
Transmit disable 2	Transmit disable register	1.9.3		PMD_transmit_disable_2	
Transmit disable 1	Transmit disable register	1.9.2		PMD_transmit_disable_1	
Transmit disable 0	Transmit disable register	-1.9.1		PMD_transmit_disable_0	
Restart training	10GBASE-KR PMD control register -1.150.0			mr_restart_training	
Training enable	10GBASE KR PMD control register 1.150.1		-1.150.1	mr_training_enable	

Table 71-2-MDIO/PMD control variable mapping

PMD MDIO function mapping (2)

- Support management variables for 4 lanes
 - Add lane by lane signal detect
 - Enumerate status indication per lane as appropriate

MDIO status variable		PMA/PMD register name	Register/ bit number	PMD status variable
Fault		Status register 1	1.1.7	PMD_fault
Transmit fault		Status register 2 1.8.11		PMD_transmit_fault
Receive fault		Status register 2	1.8.10	PMD_receive_fault
Global PMD Receive signal detect		Receive signal detect register	1.10.0	Global_PMD_signal_detect
PMD signal detect 3		Receive signal detect register	1.10.4	PMD_signal_detect_3
PMD signal detect 2		Receive signal detect register	1.10.3	PMD_signal_detect_2
PMD signal detect 1		Receive signal detect register	1.10.2	PMD_signal_detect_1
PMD signal detect 0		Receive signal detect register	1.10.1	PMD_signal_detect_0
Receiver status	10CBASE KR PMD status register		1.151.0	rx_trained
Frame lock	10GBASE KR PMD status register		1.151.1	frame_lock
Start-up protocol status	10GBASE KR PMD status register		1.151.2	training
Training failure	100	BASE-KR PMD status register	1.151.5	training_failure

Table 71-3-MDIO/PMD status variable mapping

03/18/20υჾ

ILLE &UZ.3Da LASK FORCE MEETING, URIANDO, FL

KR4 PMD transmit & receive functions

- PMD transmit function (enumerate for 4 lanes)
 - Converts 4 logical streams from PMD service interface into 4 separate electrical streams delivered to MDI
 - Separate lane by lane TX disable function in addition to Global TX disable function

PMD receive function (enumerate for 4 lanes)

- Converts 4 separate electrical streams from MDI into 4 logical streams to PMD service interface
- Separate lane by lane signal detect function in addition to Global TX disable function
- Same electrical specifications as defined in Clause 72 for 10GBASE-KR PMD
 - Receiver Compliance defined in Annex 69A (Interference Tolerance Test) and referenced in Clause 72

PMD Control function Startup & Training

- Reuse Clause 72 control function for KR4 PMD (Startup & Training)
 - Used for tuning equalizer settings for optimum backplane performance
 - Use Clause 72 training frame structure
 - Use same PRBS 11 pattern, with randomness between lanes
- Same Control channel spec as in Clause 72, enumerated per lane
 - All 4 lanes are independently trained
 - Report Global Training complete only when all 4 lanes are trained
 - Same Frame lock state diagram (Fig 72-4)
 - Same Training state diagram with enumeration of variables corresponding to 4 lanes (Fig 72-5)

Electrical characteristics

- 40GBASE-KR4 Transmit electrical characteristics
 - Same as 10GBASE-KR TX characteristics and waveforms as specified in Clause 72
 - Same test fixture setup as in Clause 72
- 40GBASE-KR4 Receiver electrical characteristics
 - Same as 10GBASE-KR RX characteristics specified in Clause 72 and Annex 69 A

Receiver Interference tolerance test

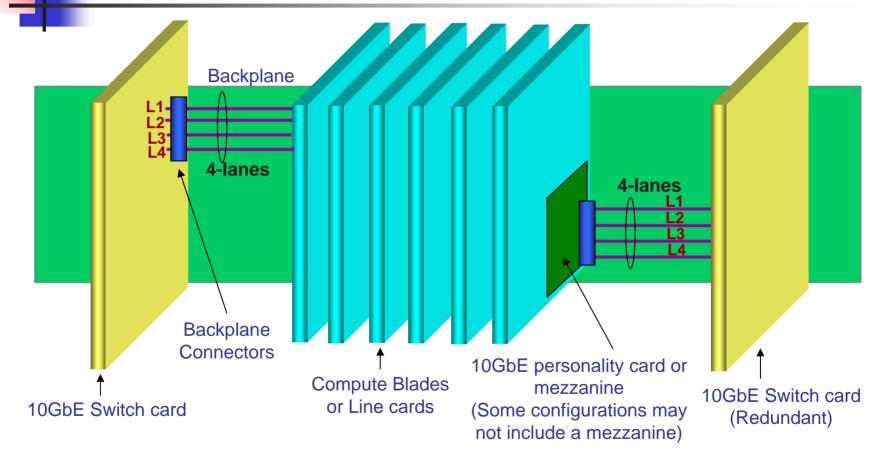
- Test procedure specified in Annex 69A
- Receiver interference tolerance parameters for 40GBASE-KR4 PMD
 - Same as Receiver interference tolerance test parameters as in Clause 72
 - No change to broadband noise amplitude for KR4

Forward Error Correction

- Reuse FEC specification for 10GBASE-R (Clause 74)
 - The FEC sublayer transparently passes 64B/66B code blocks
 - Change to accommodate FEC sync for 4 lanes
 - Same state diagram for FEC block lock
 - Report Global Sync achieved only if all lanes are locked
 - Possibly add a FEC frame marker signal that could be used for lane alignment

Interconnect Characteristics

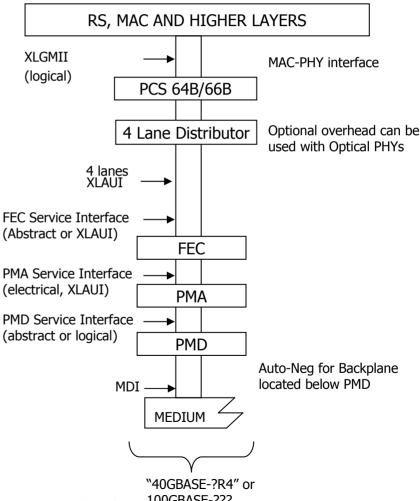
- Interconnect characteristics (informative) for backplane is defined in Annex 69B
 - No proposed changes
- 40GBASE-KR4 PHY to interface to the 4 lane backplane medium to take advantage of 802.3ap KR ready blade systems in deployment


Summary

Summary

- 40GbE backplane PHY to be architecturally consistent with IEEE Std 802.3ap layer stack
- Adopt 10GBASE-KR as baseline to Specify 40GBASE-KR4 PHY with appropriate changes proposed in this document
- Interface to 4 lane backplane medium to take advantage of 802.3ap KR ready blade systems in deployment
- Appropriate changes to add EEE feature, when adopted by 802.3az for KR
- PCS proposals and interface definitions to accommodate backplane Ethernet architecture (including FEC and AN)

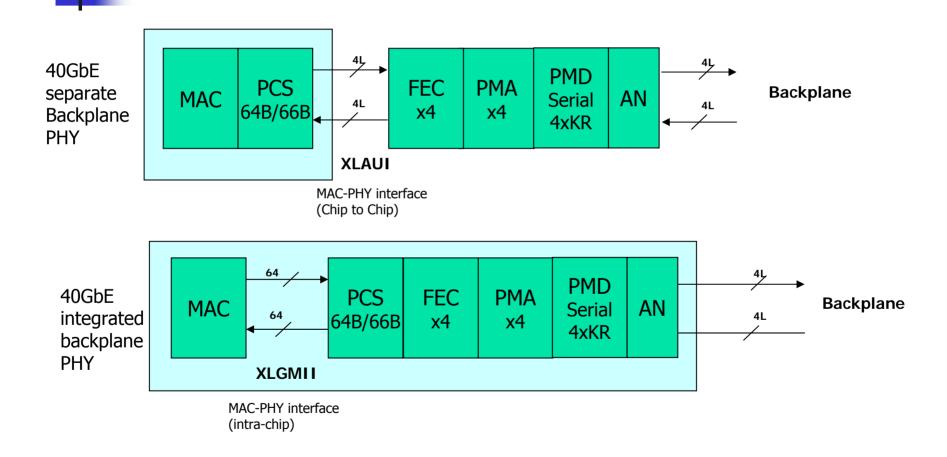
Typical backplane system illustration



<u>Note:</u> The switch cards are shown at the chassis edge for simplicity. In real systems there could be multiple fabrics located at the center, edge, or rear of the chassis

03/18/2008

Proposed 40GbE interfaces


- Inter-sublayer interfaces common to 40/100G where possible
 - XLGMII (intra-chip)
 - Logical; define data, clock, no electricals
 - PCS
 - 64B/66B encoding
 - Fixed 4-lane distributor based on 64B/66B header for alignment
 - Used for backplane & XLAUI
 - XLAUI (chip to chip)
 - Define electricals
 - FEC service interface
 - Abstract, can optionally use XLAUI
 - PMA Service interface
 - Define electricals, same as XLAUI
 - PMD Service interface
 - Abstract, or logical

03/18/2008

IEEE 802.3ba Task Force meeting, Orlando, FL^{100GBASE-???}

Possible implementation examples

