Proposal for a Limiting, Non-retimed PMD for $100 \mathrm{~Gb} / \mathrm{s}$ and $40 \mathrm{~Gb} / \mathrm{s}$ Ethernet and Related Specifications

Petar Pepeljugoski - IBM
Piers Dawe, John Petrilla - Avago Technologies
John Dallesasse, Kenneth Jackson - Emcore
Lew Aronson, Jonathan King, Chris Cole - Finisar
Mike Dudek, Jack Jewell - JDSU

Supporters and Contributors

- John Petrilla, Avago Technologies
- Piers Dawe, Avago Technologies
- John Dalesasse - Emcore
- Kenneth Jackson - Emcore
- Lew Aronson - Finisar
- Chris Cole - Finisar
- Jonathan King - Finisar
- Mike Dudek - JDSU
- Jack Jewell - JDSU
- Scott Kipp - Brocade
- Hong Liu - Google
- John Ewen - IBM
- Petar Pepeljugoski - IBM
- Alessandro Barbieri - Cisco
- John Abbott - Corning
- David Cunningham - Avago Technologies

Outline

- Proposal of a limiting, non-retimed PMD to address 802.3 ba objectives to reach 100m over OM3 at $100 \mathrm{~Gb} / \mathrm{s}$ and $40 \mathrm{~Gb} / \mathrm{s}$
- 10 lane parallel, short wavelength based PMD for $100 \mathrm{~Gb} / \mathrm{s}$
- 4 lane parallel, short wavelength based PMD for $40 \mathrm{~Gb} / \mathrm{s}$
- Same per-lane specifications for both 100 Gb/s and 40 Gb/s PMD

Motivation for Non-retimed Limiting Parallel PMD Proposal

- 10 (4) parallel links operating at 10.3125 GBd utilize low cost, high performing $10 \mathrm{~Gb} / \mathrm{s}$ optics and electronics used today in 10GBASE-S links
- Limited, un-retimed interface is the highest density, lowest power, lowest cost 100 m solution today
- Uses existing, viable semiconductor technology
- Uses known specification methods refined in SFP+ and 8GFC
- The 10 (4) optical lanes directly map the 10 (4) electrical lanes, without muxing or translation, retiming or deskewing
- Works with all proposed striping methods
- This proposal is supported by multiple vendors and users and is economically feasible and competitive with other alternatives

802.3ba PMD Block Diagram

- TP1, TP2, TP3 and TP4 are traditional labels in 802.3 for interfaces of a fiber optics link.
- Two physical interfaces are introduced between the PMA and PMD (TP1 and TP4) - PMA may be in the host ASIC, PMD is the optical module
- The block diagram below shows relevant elements and interfaces for a link between two PMAs. The patch cord is included for the definition of TP2.
- Intermediate fiber connectors are not shown

Proposal

- 10 parallel lanes @ 10.3125 GBd for $100 \mathrm{~Gb} /$ s over OM3 fiber
- 4 parallel lanes @ 10.3125 GBd for 40 Gb/s over OM3 fiber
- No glue chip required
- See also last slide

Operating range

- 0.5-100m over OM3 fiber with TBD dB allocated for connector loss
- This is more than sufficient to cover
- all distances in HPC environment,
- almost 100\% of Enterprise Data Center Client-toAccess Channels,
- >90\% of Enterprise Data Center Access-toDistribution Links, and
- almost 85\% of Enterprise Data Center Distribution-toCore Channels.
- See flatman_01_0108, Data Centre Link Survey

Transmitter specifications (each lane)

Description	Value	Unit
Signaling speed (nominal)	10.3125	GBd
Signaling speed variation from nominal (max)	± 100	ppm
Center wavelength (range)	$840-860$	nm
RMS spectral width (max)	0.65	nm
Average Launch Power (max)**	1^{\star}	dBm
Launch Power (min) in OMA	-3^{\star}	dBm
Average launch power of OFF transmitter (max)	-30	dBm
Extinction ratio (min)	3	dB
RIN ${ }_{12}$ OMA (max)	-128^{\star}	$\mathrm{dB} / \mathrm{Hz}$
Optical return Loss Tolerance (max)	-12	dB
Encircled Flux	$86 \% ~ @ ~ 19 u m, ~ 30 \% ~$ at 4.5um *	
Transmitter eye mask definition	TBD	
TP1 jitter allocation	TBD***	

* - subject to further study
** - See presentation on eye safety by J. Petrilla
*** - for further study, intermediate between 10G SFP+ and 8GFC

Receiver characteristic (each lane)

Description		
Signaling speed (nominal)	10.3125	GBd
Signaling speed variation from nominal (max)	± 100	ppm
Center wavelength (range)	$840-860$	nm
Average receiver power (max)	1^{*}	dBm
Average power at receiver input (min)	TBD*	dBm
Receiver reflectance (max)	-12	dB
Stressed receiver sensitivity in OMA (max)	TBD	dBm
- Vertical eye closure penalty (target)	TBD	dB
- Stressed eye jitter (target)	TBD	UI pk-pk
TP4 jitter allocation	TBD	UI

* For further study, depends on connector loss

Link and Cable Characteristic

Parameter	Value	Unit
Effective Modal Bandwidth	2000^{*}	MHz*km
Power Budget	$>8.3^{* *}$	dB
Operating Range	$0.5-100$	m
Channel insertion loss	TBD***	dB

* - depends on launch conditions
** - for further study
*** - connector loss under study

Further Work

- Jitter
- Crosstalk
- Connector loss
- Fine tune parameters/eliminate TBDs
- Compliance/testing simplification
- Study impact of Encircled Flux specs on link performance

Conclusion

- We propose 10 (4) lane parallel short wavelength based PMD with limited non-retimed interface operating at 10.3125 GBd for 100 (40) Gb/s Ethernet
- This proposal is the highest density, lowest power consumption and lowest cost 100m solution today
- This proposal uses viable, proven semiconductor technology
- It plans using known specification methodologies refined in other standards
- It has broad support from multiple vendors and users

Compatible with in-box link extenders Diagram for discussion

PMA is a CDR, possibly with simple EDC

* 10GBASE-KR PMA/PMD is different

