Merits of Selecting CWDM for 10km SMF PMD

opnext

Supporters

- John Dallesasse (Emcore)
- Justin Abbott (Gennum)
- Ryan Latchman (Gennum)
- Frank Chang (Vitesse)
- Scott Kipp (Brocade)
- Kunihiko Uwai (NEL)
- Isono Hideki (FUJITSU LTD.)
- Kazuyuki Mori (FUJITSU LTD.)
- Pavel Zivny (Tektronix)

- Junichi Shimizu (NEC Electronics Corp.)
- Hiroshi Nakano (NEC Electronics Corp.)
- Masahiko Kobayashi (Hitachi Cable)
- Shinji Nishimura (Hitachi)
- Hidehiro Toyoda (Hitachi)
- Dave Piede (Lightwire)

Motivation and contents of this presentation

Motivation

- Enable lowest cost, compact transceiver supporting the 10km SMF PMD in the first and future generations
- Specify a wavelength grid which minimizes cost, size, & power dissipation both in year 1 and subsequent years
- Class 1 Eye Safety is feasible with CWDM
- Laser Technologies Technology & Cost transition
- CWDM vs. LAN-WDM Merit/Demerit
 - -Wavelength Yield
 - -Optical MUX / DMUX
 - -Link Budget
 - -Power consumption & size
 - -Cost

CWDM Meets Eye Safety Requirement

- CWDM Budget meets eye safety requirement, Class 1
- CWDM feasible *today* via Cooled or Uncooled EML (EA-DFB)
- Establishes migration path for uncooled EML or DML for next gen. interfaces

EML: 3.25 – 11.2 = -7.9 OMA > 11.4 OMA DML: 1.8 – 12.1 = -10.3 OMA > 11.4 OMA

Transmitter Technology Evolution: Laser

opnext,

Feedback Grating

<u>Merit</u>

- Higher Extinction ratio
- Better chirp/dispersion characteristics

Demerit

- Lower output power
- More costly in size, power, relative \$

Feasibility

- Cooled 25G demonstrated
- Uncooled 25G demonstrated
 - S. Makino, et al, OFC2008, PDP21, Feb, 2008 and live demonstration at OFC2008
 - HSSG, gokhale_01_0107[1], Jan, 2007

<u>Merit</u>

- Higher output power
- Less costly in size, power, relative \$

Demerit

- Lower extinction ratio
- Dynamic chirp increases CD penalty

Feasibility

- Cooled 25G demonstrated
 - HSSG, isono_01_1107, Nov, 2007
- Uncooled 25G: need break through for low chirp operation

Scenario for cost reduction for the future

 Uncooled solutions will achieve the lowest cost but uncooled is only supported by the CWDM wavelength grid

opnext

Wavelength Grid Comparison

ltem		CWDM	LAN WDM	
	Grid	1271 - 1331	1312 center	
Specification	Pitch	20 nm	2 – 4 nm	
	Tolerance	+/- 6.5 nm	+/- 0.36 – 0.8 nm	
Laser for	1 st generation	Cooled I	EA-DFB	
Laser development	Technical Issue	25G 1310nm EA-DFB 25G Operation is the major challenge Wavelength grid is very minor challenge		
	Wafer fabrication	4 kinds wafer		
Laser Manufacturing	Wavelength yield	100%	Lower yield	
manalaotaning	Wavelength test	No	Required	
Laser Availability		Same		
Optical MUX/DMUX		Compact	Large and/or high cost	
Link Budget		1~2dB worse CD 1~2dB less O-Mux loss	Moderate to Difficult Gen 1 to Gen Future	
Euturo	Integration LD/PD and O- MUX/DMUX	Hybrid (low loss, w/o TEC)	Monolithic (high loss, with TEC)	
Future	LD Type	Cooled DFB Uncooled EA-DFB Uncooled DFB	Cooled DFB	

Wavelength Yield & Testing Impact: Discrete

- According to "johnson_01_0108.pdf", +/-7degC temperature shift is needed to achieve 90% wavelength yield
 Each water will likely have some additional offset
 - Each wafer will likely have some additional offset versus the target wavelength reducing yield
 - -Assumes 1dB additional MUX loss is the spec limit
 - Could yield 2dB more severe optical link budget due to optical MUX + DMUX losses
 - -Wavelength testing required
- Wavelength yield is 100%
- No wavelength testing required

Hybrid Wavelength Yield

TEC can only be set to a single temperature – thus the attached devices must be kept at a common temperature.

CWDM

- •TEC can be removed for nonwaveguide MUX tech.
- Due to 100% wavelength yield, easy assembly & test

LAN WDM

- All lasers must be kept at the same set temperature
 - Reliability, power dissipation impacted if multiple TECs used
 - MUX technologies like AWG must be cooled to maintain proper wavelength
- This means that wavelength tuning via temperature is no longer possible
 - Test each chip then mix & match chips with similar temperatures
 - Only chips that lase at temperature T_0 used impacts yield, testing, & assembly
 - Instead of 90% wavelength yield now yield drops severely!

10km SMF Link Budgets: Uncooled EML can achieve same budget as Cooled EML

• CWDM grid with uncooled EML requires less budget than LAN-WDM grid with cooled DML.

10km SMF 25G TP2 → TP3 Entries in dB	CWDM Cooled EML λ = 1271nm ER = 7dB	CWDM Uncooled EML $\lambda = 1271$ nm ER = 7dB	LAN WDM Cooled EML λ = 1318nm ER = 7dB	LAN WDM Cooled DML $\lambda = 1318$ nm ER = 4.5dB
Fiber Loss (G. 652 A&B)	4.7	4.7	4.2	4.2
ER penalty (vs. ER=10dB)	1.0	1.0	1.0	2.5
CD	1.0(*2)	1.0(*2)	0.4	1.6
Connector & Other losses	3.0	3.0	3.0	3.0
Total budget	9.7	9.7	8.6	11.3

Above table from cole_03_0108(p3), Jan, 2008

[1] Updated form uncooled DML(ER=3.5dB) to cooled DML(ER=4.7dB), similar to LAN WDM case

[2] α = +1.0 case, positive α is easier fabricated than negative for EML

10km SMF Power Budgets (Updated cole_03_0108, p4)

• CWDM grid with uncooled EML requires less budget than LAN-WDM grid with cooled DML.

10km SMF 25G λs Power in dBm (Average)	CWDM Cooled EML $\lambda = 1271$ nm ER = 7dB	CWDM Unooled EML $\lambda = 1271$ nm ER = 7dB	LAN WDM Cooled EML λ = 1318nm ER = 7dB	LAN WDM Cooled DML $\lambda = 1318$ nm ER = 4.5dB
TX Min / Max	1.2 / 4.2(*1)	1.2 / 4.2(*1)	0.1 / 3.1	2.8 / 5.8
TP2 TX Min 2.5dB Mux loss	-1.3(*)	-1.3(*)	-2.4	0.3
TP2 4λ TX Max (TX Min + 9dB)	7.7(*1)	7.7(*1)	6.6	9.3
Link Budget (dB)	9.7(*1)	9.7(*1)	8.6	11.3
TP3 RX Min 2.5dB DeMux loss	-11	-11	-11	-11
RX Min / Max (ER =10dB)	-13.5 / -16.5	-13.5 / -16.5	-13.5 / -16.5	-13.5 / -16.5

Above table from cole_03_0108(p4), Jan, 2008

[1] Updated by previous foil

TOSA Power Dissipation and Cost Comparison between cooled and uncooled

• CWDM allows lower power consumption and low cost TOSA because of uncooled laser source.

[Note] EA model: EA bias + EA driver modulation + LD bias (+TEC)

DFB model: LD bias + LD driver modulation (+TEC)

Transceiver Size and Power Dissipation

ltem		1 st Generation (D)iscrete)	Next Generation (Hybrid)		Future (Hybrid)		
	Electrical I/F	10-lane x 10G						
	Light source	Cooled EML		Un-cooled EM	Un-cooled EML(*1)		Uncooled EML/DML	
	TOSA	Discrete	4.0W	Hybrid w MUX	2.6W	Hybrid w MUX	2.6W	
CWDM	Driver	Discrete	4.8W	Quad	4.0W	Quad	3.0W	
	ROSA w TIA	Discrete	1.2W	Hybrid w DMUX	0.8W	Hybrid w DMUX	0.8W	
	Gear Box	Gearbox (SiGe)	8.0W	Gearbox (SiGe)	8.0W	Gearbox (CMOS)	4.5W	
	Power dispassion	~ 18 W		~ 15 W		~ 11 W		
	TRX size	Double XENPAK (72x121x17mm ³ , ~20W)						

	Item Next Generation (Hybrid) Future (Hyb		rid)			
	Electrical I/F		4-lane x 25G			
	Light source		Un-cooled EML(*1) Uncooled EML/DML			/DML
	TOSA		Hybrid w MUX	2.6W	Hybrid w MUX	2.6W
CWDM	Driver		Quad	4.0W	Quad	3.0W
	ROSA w TIA		Hybrid w DMUX	0.8W	Hybrid w DMUX	0.8W
	Gear Box		Quad CDR (SiGe)	4.5W	Quad CDR (CMOS)	2.5W
	Power dispassion		~ 12 W		~ 9 W	
	TRX size		Double XENPAK (~20W)		XENPAK (36x121x17 ³ , ~10W)	

[1] S. Makino et al., OFC2008, PD paper; 10km transmission under uncooled operation

10km PMD Transmit Characteristics

Table 53-5: LX4 Wavelengths

Lane	Wavelength ranges	PMD Service Interface transmit bit stream	PMD Service Interface receive bit stream	
L ₀	1269.0 – 1282.4 nm	tx_lane<0>	rx_lane<0>	
L ₁	1293.5 – 1306.9 nm	tx_lane<1>	rx_lane<1>	
L ₂	1318.0 – 1331.4 nm	tx_lane<2>	rx_lane<2>	
L3	1342.5 – 1355.9 nm	tx_lane<3>	rx_lane<3>	

Table xx-y: CWDM Wavelengths

Suggested Table Wavelength PMD Service Interface PMD Service Interface Lane receive bit stream Ranges transmit bit stream for CWDM Grid 1264.5 - 1277.5 nm |tx_lane<0> rx lane<0> L_0 1284.5 - 1297.5 nm tx lane <1>rx lane<1> L_1 1304.5 - 1317.5 nm tx lane<2> rx_lane<2> L_2 1324.5 - 1337.5 nm tx lane<3> L_3 rx lane<3>

LAN-WDM is the best solution for 40km Objective

 LAN-WDM is a great solution to minimize Chromatic Dispersion –traverso_01_0307.pdf, cole_01_0407.pdf,

opnext

- LAN-WDM is the best choice for 40km transmission as a client to client TDM interface
 - -DWDM & optical transport will desire a more spectrally efficient PMD
 - takeda_01_0907.pdf, woodward_01_0707.pdf
- By standardizing both LAN-WDM & CWDM, the industry is open to more innovation and cost reduction in the future

Summary

- CWDM allows for 100% wavelength yield today
 - -LAN-WDM requires temperature shift of +/-7degC to achieve advertised yield
- CWDM allows for quickest transition to hybrid packaging and reducing cost – LAN-WDM is difficult to implement on a single TEC bench
- CWDM allows a migration path for uncooled optics & therefore reduced power dissipation
 - -LAN-WDM optics must always be cooled
- CWDM enables high density systems with 100GbE uplinks today
 - Lasers do not need to be driven as hard for CWDM vs. LAN-WDM
- CWDM enables high density 100GbE multi-port systems in the future
 - Low power dissipation using uncooled technology

CWDM DML Feasibility (Fujitsu)[*1]

- 25Gbps, 10km transmission is demonstrated (equivalent to chromatic dispersion for CWDM)
 - 10 km transmission penalty: 3dB
 - Extinction ratio: 6dB

[1] HSSG, isono_01_1107, Nov, 2007

CWDM Uncooled EML Feasibility (1) (Hitachi CRL / opnext)[*1]

- Uncooled 4- λ CWDM 25-Gbps EML over 10-km Transmission is demonstrated
 - 12 km SMF transmission
 - Extinction ratio: > 9 dB

25.8Gbps,CH1(λ=1291nm)

[1] S. Makino, et al, OFC2008, PDP21, Feb, 2008 and live demonstration at OFC2008

CWDM Uncooled EML Feasibility (2) (Apogee, present Cyoptics)[*1]

- Uncooled EML operation under 20Gbps(10km transmission) and 26Gbps(BtoB) is demonstrated
 - 10 km transmission penalty: negligible
 - Extinction ratio: > 9 dB

26 Gbps optical eyes (0 km) vs. temperature

[1] HSSG, gokhale_01_0107[1], Jan, 2007

20Gbps transmission through 10km fiber

<u>opnext</u>

Power Dispassion

	ltem	1 st Generation (I	Discrete)	Next Generation (Hybrid)		Future (Hybrid / Monolithic)	
	Light source	Cooled EML		Cooled DML(*3)		Uncooled EML/DML(*4)	
	O-MUX/DMUX	Zig-Zag (7x15x5mm ³)		Zig-Zag into TOSA/ROSA			
	TOSA	Discrete	6.0W(*1)	Hybrid w MUX	3.5W	Hybrid w MUX	2.5W
9	Driver	Discrete/Quad	2.0W(*2)	Discrete/Quad	2.0W(*2)	Discrete/Quad	2.0W(*2)
≥ D	ROSA w TIA	Discrete	1.2W(*2)	Hybrid w DMUX	1.2W(*2)	Hybrid w DMUX	1.0W
Σ	Gear Box	Dual 5:2 (SiGe)	6.5W(*2)	Dual 5:2 (SiGe)	6.5W(*2)	Dual 5:2 (SiGe)	6.5W(*2)
	Power dispassion	~ 16 W		~ 14W		~ 12W	
	Comment			Cost reduction (existing LX-4)		lower power dispassion	
	Light source	Cooled EML		Cooled EML/DML		Cooled DML	
	O-MUX/DMUX	3-port (100x120x8mm ³)		Unrealistic into TOSA/ROSA		Monolithic integration	
	TOSA	Discrete	6.0W(*1)	Hybrid w MUX	4.5W(*2)	Monolithic w MUX	4.5W
F	Driver	Discrete/Quad	2.0W(*2)	Discrete/Quad	2.0W(*2)	Discrete/Quad	2.0W(*2)
Z	ROSA w TIA	Discrete	1.2W(*2)	Hybrid w DMUX	1.2W(*2)	Monolithic w DMUX	2.0W
V D	Gear Box	Dual 5:2 (SiGe)	6.5W(*2)	Dual 5:2 (SiGe)	6.5W(*2)	Quad CDR (CMOS)	3.0W
Ζ	Power dispassion	~ 16 W		~ 15W		~ 16.5W	
	Comment	Very large O-MUX/DMUX		Hard to hybrid integration		Required TE-cooler for O-MUX/DMUX	

[2] HSSG, cole_01_0307, Mar, 2007

[3] HSSG, isono_01_1107, Nov, 2007; 10km transmission with 3dB penalty[4] S. Makino et al., OFC2008, PD paper; 10km transmission under uncooled operation

Optical MUX / DMUX (2): Comparison (TF Filter)

22

Potential Language for Wavelength Grid Motion

Motion #x: Adopt CWDM wavelength grid in traverso_01_0308 slide 14 as the basis for the 10km SMF PMD objective.

For:

Against: